Enterprise-grade database management system built on SurrealDB with integrated machine learning capabilities.
- CRUD operations
- Schema management
- Migration tools
- Query optimization
- Built-in machine learning capabilities
- Model training and prediction
- Automated feature engineering
- Real-time inference
- Role-based access control
- Query sanitization
- Audit logging
- Encryption at rest
- OpenTelemetry integration
- Performance metrics
- Anomaly detection
- Real-time alerting
- Install SurrealDB
- Configure environment variables
- Initialize the database
- Start the service
// Connect to database
let db = DatabaseManager::new(config).await?;
// Execute query
let result = db.execute_query("SELECT * FROM users").await?;// Train model
let model = db.train_model("SELECT * FROM training_data", "target_column").await?;
// Make predictions
let prediction = db.predict("model_name", input_data).await?;Monitor your database using the integrated telemetry:
// Record custom metric
telemetry.record_metric("query_count", 1.0, vec![("type", "select")]);
// Track operation latency
telemetry.record_latency("query_execution", duration);See config.example.yaml for configuration options.
- Use RBAC for access control
- Enable encryption
- Regular security audits
- Monitor suspicious activities
- Index management
- Query optimization
- Resource allocation
- Caching strategies
See CONTRIBUTING.md for guidelines.
Proprietary software. All rights reserved.