Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,5 +14,6 @@ endfunction(build_example)
# build_example(FFNet.cpp)
# build_example(Node.cpp)
build_example(perceptron.cpp)
build_example(alexnet.cpp)
# build_example(Weights.cpp)
build_example(autograd.cpp)
78 changes: 78 additions & 0 deletions examples/alexnet.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
/*******************************************************
* Copyright (c) 2017, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/

#include <af/autograd.h>
#include <af/nn.h>

using namespace af;
using namespace af::nn;
using namespace af::autograd;

int main()
{
const int inputSize = 2;
const int outputSize = 1;
const double lr = 0.1;
const int numSamples = 1;

auto in = af::randu(227, 227, 3, numSamples);
auto out = af::randu(55, 55, 96, 1);

nn::Sequential alexnet;

//alexnet.add(nn::Conv2D(11, 11, 4, 4, 0, 0, 3, 96, true));
alexnet.add(nn::ReLU());

Variable result;
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < numSamples; j++) {
alexnet.train();
alexnet.zeroGrad();

af::array in_j = in(af::span, af::span, af::span, j);
af::array out_j = out;

// Forward propagation
result = alexnet.forward(nn::input(in_j));

// Calculate loss
// TODO: Use loss function
af::array diff = out_j - result.array();

// Backward propagation
auto d_result = Variable(diff, false);
result.backward(d_result);

// Update parameters
// TODO: Should use optimizer
for (auto &param : alexnet.parameters()) {
param.array() += lr * param.grad().array();
param.array().eval();
}
}

if ((i + 1) % 100 == 0) {
alexnet.eval();

// Forward propagation
result = alexnet.forward(nn::input(in));

// Calculate loss
// TODO: Use loss function
af::array diff = out - result.array();
printf("Average Error at iteration(%d) : %lf\n", i + 1, af::mean<float>(af::abs(diff)));
printf("Predicted\n");
//af_print(result.array());
printf("Expected\n");
//af_print(out);
printf("\n\n");
}
}
return 0;
}