Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add from_numpyro #39

Merged
merged 2 commits into from
Mar 17, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/api/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@

arviz_base.from_cmdstanpy
arviz_base.from_emcee
arviz_base.from_numpyro
```

More coming soon...
Expand Down
2 changes: 1 addition & 1 deletion external_tests/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@ def load_cached_models(eight_schools_data, draws, chains, libs=None):
# ("pystan", pystan_noncentered_schools),
("emcee", emcee_schools_model),
# ("pyro", pyro_noncentered_schools),
# ("numpyro", numpyro_schools_model),
("numpyro", numpyro_schools_model),
)
data_directory = os.path.join(here, "saved_models")
if not os.path.isdir(data_directory):
Expand Down
275 changes: 275 additions & 0 deletions external_tests/test_numpyro.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
# pylint: disable=no-member, invalid-name, redefined-outer-name
from collections import namedtuple

import numpy as np
import pytest

from arviz_base.io_numpyro import from_numpyro
from arviz_base.testing import check_multiple_attrs

from .helpers import importorskip, load_cached_models

# Skip all tests if jax or numpyro not installed
jax = importorskip("jax")
PRNGKey = jax.random.PRNGKey
numpyro = importorskip("numpyro")
Predictive = numpyro.infer.Predictive
numpyro.set_host_device_count(2)


class TestDataNumPyro:
@pytest.fixture(scope="class")
def data(self, eight_schools_params, draws, chains):
class Data:
obj = load_cached_models(eight_schools_params, draws, chains, "numpyro")["numpyro"]

return Data

@pytest.fixture(scope="class")
def predictions_params(self):
"""Predictions data for eight schools."""
return {
"J": 8,
"sigma": np.array([5.0, 7.0, 12.0, 4.0, 6.0, 10.0, 3.0, 9.0]),
}

@pytest.fixture(scope="class")
def predictions_data(self, data, predictions_params):
"""Generate predictions for predictions_params"""
posterior_samples = data.obj.get_samples()
model = data.obj.sampler.model
predictions = Predictive(model, posterior_samples)(
PRNGKey(2), predictions_params["J"], predictions_params["sigma"]
)
return predictions

def get_inference_data(self, data, eight_schools_params, predictions_data, predictions_params):
posterior_samples = data.obj.get_samples()
model = data.obj.sampler.model
posterior_predictive = Predictive(model, posterior_samples)(
PRNGKey(1), eight_schools_params["J"], eight_schools_params["sigma"]
)
prior = Predictive(model, num_samples=500)(
PRNGKey(2), eight_schools_params["J"], eight_schools_params["sigma"]
)
predictions = predictions_data
return from_numpyro(
posterior=data.obj,
prior=prior,
posterior_predictive=posterior_predictive,
predictions=predictions,
coords={
"school": np.arange(eight_schools_params["J"]),
"school_pred": np.arange(predictions_params["J"]),
},
dims={"theta": ["school"], "eta": ["school"], "obs": ["school"]},
pred_dims={"theta": ["school_pred"], "eta": ["school_pred"], "obs": ["school_pred"]},
)

def test_inference_data_namedtuple(self, data):
samples = data.obj.get_samples()
Samples = namedtuple("Samples", samples)
data_namedtuple = Samples(**samples)
_old_fn = data.obj.get_samples
data.obj.get_samples = lambda *args, **kwargs: data_namedtuple
inference_data = from_numpyro(
posterior=data.obj,
)
assert isinstance(data.obj.get_samples(), Samples)
data.obj.get_samples = _old_fn
for key in samples:
assert key in inference_data.posterior

def test_inference_data(self, data, eight_schools_params, predictions_data, predictions_params):
inference_data = self.get_inference_data(
data, eight_schools_params, predictions_data, predictions_params
)
test_dict = {
"posterior": ["mu", "tau", "eta"],
"sample_stats": ["diverging"],
"posterior_predictive": ["obs"],
"predictions": ["obs"],
"prior": ["mu", "tau", "eta"],
"prior_predictive": ["obs"],
"observed_data": ["obs"],
}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails

## test dims
dims = inference_data.posterior_predictive.sizes["school"]
pred_dims = inference_data.predictions.sizes["school_pred"]
assert dims == 8
assert pred_dims == 8

def test_inference_data_no_posterior(
self, data, eight_schools_params, predictions_data, predictions_params
):
posterior_samples = data.obj.get_samples()
model = data.obj.sampler.model
posterior_predictive = Predictive(model, posterior_samples)(
PRNGKey(1), eight_schools_params["J"], eight_schools_params["sigma"]
)
prior = Predictive(model, num_samples=500)(
PRNGKey(2), eight_schools_params["J"], eight_schools_params["sigma"]
)
predictions = predictions_data
constant_data = {"J": 8, "sigma": eight_schools_params["sigma"]}
predictions_constant_data = predictions_params
## only prior
inference_data = from_numpyro(prior=prior)
test_dict = {"prior": ["mu", "tau", "eta"]}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails, f"only prior: {fails}"
## only posterior_predictive
inference_data = from_numpyro(posterior_predictive=posterior_predictive)
test_dict = {"posterior_predictive": ["obs"]}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails, f"only posterior_predictive: {fails}"
## only predictions
inference_data = from_numpyro(predictions=predictions)
test_dict = {"predictions": ["obs"]}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails, f"only predictions: {fails}"
## only constant_data
inference_data = from_numpyro(constant_data=constant_data)
test_dict = {"constant_data": ["J", "sigma"]}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails, f"only constant_data: {fails}"
## only predictions_constant_data
inference_data = from_numpyro(predictions_constant_data=predictions_constant_data)
test_dict = {"predictions_constant_data": ["J", "sigma"]}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails, f"only predictions_constant_data: {fails}"
prior and posterior_predictive
idata = from_numpyro(
prior=prior,
posterior_predictive=posterior_predictive,
coords={"school": np.arange(eight_schools_params["J"])},
dims={"theta": ["school"], "eta": ["school"]},
)
test_dict = {"posterior_predictive": ["obs"], "prior": ["mu", "tau", "eta", "obs"]}
fails = check_multiple_attrs(test_dict, idata)
assert not fails, f"prior and posterior_predictive: {fails}"

def test_inference_data_only_posterior(self, data):
idata = from_numpyro(data.obj)
test_dict = {
"posterior": ["mu", "tau", "eta"],
"sample_stats": ["diverging"],
}
fails = check_multiple_attrs(test_dict, idata)
assert not fails

def test_multiple_observed_rv(self):
import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS

rng = np.random.default_rng()
y1 = rng.normal(size=10)
y2 = rng.normal(size=100)

def model_example_multiple_obs(y1=None, y2=None):
x = numpyro.sample("x", dist.Normal(1, 3))
numpyro.sample("y1", dist.Normal(x, 1), obs=y1)
numpyro.sample("y2", dist.Normal(x, 1), obs=y2)

nuts_kernel = NUTS(model_example_multiple_obs)
mcmc = MCMC(nuts_kernel, num_samples=10, num_warmup=2)
mcmc.run(PRNGKey(0), y1=y1, y2=y2)
inference_data = from_numpyro(mcmc)
test_dict = {
"posterior": ["x"],
"sample_stats": ["diverging"],
"observed_data": ["y1", "y2"],
}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails
assert not hasattr(inference_data.sample_stats, "log_likelihood")

def test_inference_data_constant_data(self):
import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS

x1 = 10
x2 = 12
rng = np.random.default_rng()
y1 = rng.normal(size=10)

def model_constant_data(x, y1=None):
_x = numpyro.sample("x", dist.Normal(1, 3))
numpyro.sample("y1", dist.Normal(x * _x, 1), obs=y1)

nuts_kernel = NUTS(model_constant_data)
mcmc = MCMC(nuts_kernel, num_samples=10, num_warmup=2)
mcmc.run(PRNGKey(0), x=x1, y1=y1)
posterior = mcmc.get_samples()
posterior_predictive = Predictive(model_constant_data, posterior)(PRNGKey(1), x1)
predictions = Predictive(model_constant_data, posterior)(PRNGKey(2), x2)
inference_data = from_numpyro(
mcmc,
posterior_predictive=posterior_predictive,
predictions=predictions,
constant_data={"x1": x1},
predictions_constant_data={"x2": x2},
)
test_dict = {
"posterior": ["x"],
"posterior_predictive": ["y1"],
"sample_stats": ["diverging"],
"predictions": ["y1"],
"observed_data": ["y1"],
"constant_data": ["x1"],
"predictions_constant_data": ["x2"],
}
fails = check_multiple_attrs(test_dict, inference_data)
assert not fails

def test_inference_data_num_chains(self, predictions_data, chains):
predictions = predictions_data
inference_data = from_numpyro(predictions=predictions, num_chains=chains)
nchains = inference_data.predictions.sizes["chain"]
assert nchains == chains

@pytest.mark.parametrize("nchains", [1, 2])
@pytest.mark.parametrize("thin", [1, 2, 3, 5, 10])
def test_mcmc_with_thinning(self, nchains, thin):
import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS

rng = np.random.default_rng()
x = rng.normal(10, 3, size=100)

def model(x):
numpyro.sample(
"x",
dist.Normal(
numpyro.sample("loc", dist.Uniform(0, 20)),
numpyro.sample("scale", dist.Uniform(0, 20)),
),
obs=x,
)

nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_warmup=100, num_samples=400, num_chains=nchains, thinning=thin)
mcmc.run(PRNGKey(0), x=x)

inference_data = from_numpyro(mcmc)
assert inference_data.posterior["loc"].shape == (nchains, 400 // thin)

def test_mcmc_improper_uniform(self):
import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS

def model():
x = numpyro.sample("x", dist.ImproperUniform(dist.constraints.positive, (), ()))
return numpyro.sample("y", dist.Normal(x, 1), obs=1.0)

mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
mcmc.run(PRNGKey(0))
inference_data = from_numpyro(mcmc)
assert inference_data.observed_data
1 change: 1 addition & 0 deletions src/arviz_base/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from arviz_base.io_cmdstanpy import from_cmdstanpy
from arviz_base.io_dict import from_dict
from arviz_base.io_emcee import from_emcee
from arviz_base.io_numpyro import from_numpyro
from arviz_base.rcparams import rc_context, rcParams
from arviz_base.reorg import extract, dataset_to_dataarray, dataset_to_dataframe
from arviz_base.sel_utils import *
Loading