Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/eval pipeline deploy #9

Merged
merged 2 commits into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions ml_pipelines/deployment/local/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,10 +91,27 @@ def save_eval_artifacts(
plots.savefig(str(version_dir / "calibration_plot.png"))


def get_all_available_train_versions(root_path: os.PathLike | str):
root_dir = Path(root_path)
return [d.stem for d in root_dir.iterdir() if d.is_dir()]


def get_latest_version(root_path: os.PathLike, filename: str) -> str:
root_dir = Path(root_path)
versions: list[tuple[str, float]] = []
for version_dir in root_dir.iterdir():
st_mtime = (version_dir / filename).stat().st_mtime
versions.append((version_dir.stem, st_mtime))
return max(versions, key=lambda t: t[1])[0]


def get_best_version(train_artifacts_root_path: os.PathLike):
train_dir = Path(train_artifacts_root_path)
with open(train_dir / "best_model") as f:
return f.read()


def tag_best_version(train_version: str, train_artifacts_root_path: os.PathLike):
train_dir = Path(train_artifacts_root_path)
with open(train_dir / "best_model", "w") as f:
f.write(train_version)
81 changes: 81 additions & 0 deletions ml_pipelines/deployment/local/eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import logging
import os
import sys
from logging import Logger
from typing import Union

import typer

from ml_pipelines.deployment.local.common import (
get_all_available_train_versions,
get_latest_version,
get_raw_data,
get_train_artifacts,
tag_best_version,
)
from ml_pipelines.pipeline.eval_pipeline import eval_pipeline


def run_eval_comparison_pipeline( # noqa: PLR0913
raw_data_version: str,
raw_data_root_path: os.PathLike,
train_versions: list[str],
train_artifacts_root_path: os.PathLike,
logger: Logger,
):
logger.info(f"Running eval pipeline on model versions: {train_versions}.")
logger.info(f"Raw data version {raw_data_version}.")
raw_data = get_raw_data(raw_data_version, raw_data_root_path)
all_metrics = []
for v in train_versions:
train_artifacts = get_train_artifacts(
v, train_artifacts_root_path, load_data=False
)
metrics, _ = eval_pipeline(
train_artifacts["model"],
train_artifacts["feature_eng_params"],
raw_data,
logger,
)
all_metrics.append((v, metrics))
best_version = max(all_metrics, key=lambda t: t[1])[0]
logger.info(f"Tagging best version as {best_version}")
tag_best_version(best_version, train_artifacts_root_path)


if __name__ == "__main__":
from dotenv import load_dotenv

load_dotenv()
RAW_DATA_ROOT_DIR = os.environ["RAW_DATA_ROOT_DIR"]
TRAIN_ARTIFACTS_ROOT_DIR = os.environ["TRAIN_ARTIFACTS_ROOT_DIR"]

def main(
raw_data_version: Union[str, None] = None, # noqa: UP007
train_versions: Union[list[str], None] = None, # noqa: UP007
raw_data_root_path: str = RAW_DATA_ROOT_DIR,
train_artifacts_root_path: str = TRAIN_ARTIFACTS_ROOT_DIR,
):
logger = Logger(__file__)
logger.addHandler(logging.StreamHandler(sys.stdout))

if raw_data_version is None:
raw_data_version = get_latest_version(
raw_data_root_path, # type: ignore
"raw_data.csv",
)

if not train_versions:
train_versions = get_all_available_train_versions( # type: ignore
train_artifacts_root_path
)

run_eval_comparison_pipeline( # noqa: PLR0913
raw_data_version=raw_data_version,
raw_data_root_path=raw_data_root_path, # type: ignore
train_versions=train_versions, # type: ignore
train_artifacts_root_path=train_artifacts_root_path, # type: ignore
logger=logger,
)

typer.run(main)
14 changes: 9 additions & 5 deletions ml_pipelines/deployment/local/serve.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,10 @@
import typer
import uvicorn

from ml_pipelines.deployment.local.common import get_latest_version, get_train_artifacts
from ml_pipelines.deployment.local.common import (
get_best_version,
get_train_artifacts,
)
from ml_pipelines.logic.serve.serve import Point, create_fastapi_app


Expand Down Expand Up @@ -48,10 +51,11 @@ def main(
logger.addHandler(logging.StreamHandler(sys.stdout))

if train_version is None:
train_version = get_latest_version(
train_artifacts_root_path, # type: ignore
"model.pickle",
)
train_version = get_best_version(train_artifacts_root_path) # type: ignore
# train_version = get_latest_version(
# train_artifacts_root_path, # type: ignore
# "model.pickle",
# )

uvicorn_kwargs: dict = {}
run_serve( # noqa: PLR0913
Expand Down
2 changes: 1 addition & 1 deletion ml_pipelines/deployment/local/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def run_train_pipeline( # noqa: PLR0913
metrics, plots = eval_pipeline(
train_artifacts["model"],
train_artifacts["feature_eng_params"],
train_artifacts["raw_test_data"],
train_artifacts["raw_test_data"], # type: ignore
logger,
)
save_eval_artifacts(train_version, train_artifacts_root_path, metrics, plots)
Expand Down