Skip to content

Commit

Permalink
update lecture notes
Browse files Browse the repository at this point in the history
  • Loading branch information
SaberPRC committed Aug 23, 2024
1 parent 4bd9953 commit 5faa0fe
Show file tree
Hide file tree
Showing 20 changed files with 169 additions and 4 deletions.
8 changes: 8 additions & 0 deletions Lecture-notes/DGL_Lecture_1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
### DGL Lecture 1
***

* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types

* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix

* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks
Binary file not shown.
Binary file not shown.
11 changes: 11 additions & 0 deletions Lecture-notes/DGL_Lecture_2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
### DGL Lecture 2
***
* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning

* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding

* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding

* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer

* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates
Binary file not shown.
Binary file not shown.
13 changes: 13 additions & 0 deletions Lecture-notes/DGL_Lecture_3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
### DGL Lecture 3
***


* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization

* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning

* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating

* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations

* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods
Binary file not shown.
Binary file not shown.
15 changes: 15 additions & 0 deletions Lecture-notes/DGL_Lecture_4/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
### DGL Lecture 4
***


* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent

* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods

* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods

* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer

* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout

* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning
Binary file not shown.
Binary file not shown.
11 changes: 11 additions & 0 deletions Lecture-notes/DGL_Lecture_5/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
### DGL Lecture 5
***


* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs

* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs

* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness

* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets
Binary file not shown.
Binary file not shown.
18 changes: 18 additions & 0 deletions Lecture-notes/DGL_Lecture_6/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
### DGL Lecture 6
***


* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs

* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs

* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation

* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation

* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs

* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net

* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs

Binary file not shown.
97 changes: 93 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,94 @@
# DGL 2024 (ICL, Computing)
Deep Graph-Based Learning Course.
# Deep Graph Learning (DGL, 2024)

# Lecture videos and notes
Follow us at https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&ab_channel=BASIRALab
Taught by Prof. [Islem Rekik](https://basira-lab.com/) at Imperial College London
***

### Introduction
This repo contains all the lecture notes for this DGL course. All relevant records for this course can be accessed at [BASIRA Lab](https://www.youtube.com/playlist?list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T).

***
### Course Lectures
* [Lecture 1](./Lecture-notes/DGL_Lecture_1/):

* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types

* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix

* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks

* [Lecture 2](./Lecture-notes/DGL_Lecture_2/):

* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning

* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding

* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding

* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer

* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates

* [Lecture 3](./Lecture-notes/DGL_Lecture_3/):

* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization

* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning

* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating

* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations

* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods

* [Lecture 4](./Lecture-notes/DGL_Lecture_4/):

* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent

* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods

* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods

* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer

* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout

* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning

* [Lecture 5](./Lecture-notes/DGL_Lecture_5/):

* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs

* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs

* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness

* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets

* [Lecture 6](./Lecture-notes/DGL_Lecture_6/):

* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs

* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs

* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation

* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation

* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs

* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net

* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs

***
### Homeworks

***
### Paper analysis worksheets

***
### Project

***
### Tutorials
***

0 comments on commit 5faa0fe

Please sign in to comment.