-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
169 additions
and
4 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
### DGL Lecture 1 | ||
*** | ||
|
||
* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types | ||
|
||
* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix | ||
|
||
* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks |
Binary file renamed
BIN
+9.23 MB
...e-embedding-ML-to-GCN/DGL-2-ANNOTATED.pdf → ...DGL_Lecture_2/DGL_Lecture_2_Annotated.pdf
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
### DGL Lecture 2 | ||
*** | ||
* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning | ||
|
||
* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding | ||
|
||
* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding | ||
|
||
* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer | ||
|
||
* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
### DGL Lecture 3 | ||
*** | ||
|
||
|
||
* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization | ||
|
||
* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning | ||
|
||
* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating | ||
|
||
* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations | ||
|
||
* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
### DGL Lecture 4 | ||
*** | ||
|
||
|
||
* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent | ||
|
||
* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods | ||
|
||
* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods | ||
|
||
* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer | ||
|
||
* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout | ||
|
||
* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
### DGL Lecture 5 | ||
*** | ||
|
||
|
||
* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs | ||
|
||
* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs | ||
|
||
* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness | ||
|
||
* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
### DGL Lecture 6 | ||
*** | ||
|
||
|
||
* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs | ||
|
||
* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs | ||
|
||
* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation | ||
|
||
* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation | ||
|
||
* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs | ||
|
||
* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net | ||
|
||
* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs | ||
|
Binary file removed
BIN
-6.98 MB
Lecture-notes/Lecture-2-feature-embedding-ML-to-GCN/DGL-2-CLEAN.pdf
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,94 @@ | ||
# DGL 2024 (ICL, Computing) | ||
Deep Graph-Based Learning Course. | ||
# Deep Graph Learning (DGL, 2024) | ||
|
||
# Lecture videos and notes | ||
Follow us at https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&ab_channel=BASIRALab | ||
Taught by Prof. [Islem Rekik](https://basira-lab.com/) at Imperial College London | ||
*** | ||
|
||
### Introduction | ||
This repo contains all the lecture notes for this DGL course. All relevant records for this course can be accessed at [BASIRA Lab](https://www.youtube.com/playlist?list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T). | ||
|
||
*** | ||
### Course Lectures | ||
* [Lecture 1](./Lecture-notes/DGL_Lecture_1/): | ||
|
||
* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types | ||
|
||
* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix | ||
|
||
* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks | ||
|
||
* [Lecture 2](./Lecture-notes/DGL_Lecture_2/): | ||
|
||
* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning | ||
|
||
* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding | ||
|
||
* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding | ||
|
||
* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer | ||
|
||
* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates | ||
|
||
* [Lecture 3](./Lecture-notes/DGL_Lecture_3/): | ||
|
||
* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization | ||
|
||
* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning | ||
|
||
* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating | ||
|
||
* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations | ||
|
||
* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods | ||
|
||
* [Lecture 4](./Lecture-notes/DGL_Lecture_4/): | ||
|
||
* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent | ||
|
||
* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods | ||
|
||
* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods | ||
|
||
* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer | ||
|
||
* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout | ||
|
||
* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning | ||
|
||
* [Lecture 5](./Lecture-notes/DGL_Lecture_5/): | ||
|
||
* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs | ||
|
||
* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs | ||
|
||
* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness | ||
|
||
* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets | ||
|
||
* [Lecture 6](./Lecture-notes/DGL_Lecture_6/): | ||
|
||
* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs | ||
|
||
* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs | ||
|
||
* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation | ||
|
||
* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation | ||
|
||
* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs | ||
|
||
* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net | ||
|
||
* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs | ||
|
||
*** | ||
### Homeworks | ||
|
||
*** | ||
### Paper analysis worksheets | ||
|
||
*** | ||
### Project | ||
|
||
*** | ||
### Tutorials | ||
*** |