TinyLLaVA: A Framework of Small-scale Large Multimodal Models
🎉 News
- [2024.03.10] base recipe out!
- [2024.03.10] Finetune scripts out!
- [2024.02.25] Update evaluation scripts and docs!
- [2024.02.25] Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
- [2024.02.24] Example code on inference and model loading added!
- [2024.02.23] Evaluation code and scripts released!
- [2024.02.21] Creating the TinyLLaVABench repository on GitHub!
- [2024.02.21] Our paper: TinyLLaVA: A Framework of Small-scale Large Multimodal Models is out!
- [2024.01.11] Our fist model TinyLLaVA-1.4B is out!
⌛ TODO
- Add support for Ollama and llama.cpp.
- Developers' guide / How to build demo locally.
- Training and custom finetuning docs.
- Model Zoo descriptions.
- Examples and inference.
- Release code for training.
- Add descriptions for evaluation.
- Add descriptions for data preparation.
- Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
- Release TinyLLaVA-3.1B.
- Release the evaluation code and weights today(2024.2.23).
🔥 High performance, but with fewer parameters
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
Contents
🔧 Requirements and Installation
We recommend the requirements as follows.
- Clone this repository and navigate to LLaVA folder
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
cd TinyLLaVABench
- Install Package
conda create -n tinyllava python=3.10 -y
conda activate tinyllava
pip install --upgrade pip # enable PEP 660 support
pip install -e .
- Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
Upgrade to the latest code base
git pull
pip install -e .
# if you see some import errors when you upgrade, please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir
🐳 Model Zoo
Legacy Model
Pretrained Models
Model Details
Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
---|---|---|---|---|---|---|---|---|---|---|
TinyLLaVA-3.1B | Phi-2 | TinyLLaVA-3.1B | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
TinyLLaVA-2.0B | StableLM-2-1.6B | TinyLLaVA-2.0B | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
TinyLLaVA-1.5B | TinyLlama | TinyLLaVA-1.5B | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
Demo
Gradio Web Demo
Launch a local web demo by running:
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
CLI Inference
We also support running inference with CLI. To use our model, run:
python -m tinyllava.serve.cli \
--model-path bczhou/TinyLLaVA-3.1B \
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
🔧 Quick Start
Load model
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
🔧 Run Inference
Here's an example of running inference with TinyLLaVA-3.1B
Run Inference
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": "phi",
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
Important
We use different conv_mode
for different models. Replace the conv_mode
in args
according to this table:
| model | conv_mode |
|---------------- |----------- |
| TinyLLaVA-3.1B | phi |
| TinyLLaVA-2.0B | phi |
| TinyLLaVA-1.5B | v1 |
Evaluation
To ensure the reproducibility, we evaluate the models with greedy decoding.
See Evaluation.md
Data Preparation
In our paper, we used two different datasets: the LLaVA dataset and the ShareGPT4V dataset, and compared their differences. In this section, we provide information on data preparation.
Pretraining Images
- LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
- ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
Pretraining Annotations
- LLaVA: The pretraining annotations of LLaVA are here.
- ShareGPT4V: The pretraining annotations of ShareGPT4V are here.
SFT Images & Annotations
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the 100K ShareGPT4V data.
Download data
- Download relevant images
- LAION-CC-SBU-558K: images.zip
- COCO: This dataset is from the COCO2017 challenge. Download: train2017
- WebData: This dataset is curated by the ShareGPT4V project. Download: images. Only for academic usage.
- SAM: This dataset is collected by Meta. Download: images. We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from here.
- GQA: GQA project page. Download: images
- OCR-VQA: OCR-VQA project page. Download: download script. We save all files as
.jpg
- TextVQA: TextVQA project page. Download: trainvalimages
- VisualGenome: VisualGenome project page. Download: part1, part2
- Download relevant annotations
- LLaVA's pretraining annotations: blip_laion_cc_sbu_558k.json
- LLaVA's SFT annotations: llava_v1_5_mix665k.json
- ShareGPT4V's pretraining annotations: share-captioner_coco_lcs_sam_1246k_1107.json
- ShareGPT4V's SFT annotations: sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
Organize Data
Organize the image files and annotation files as follows in path/to/your/data
:
data
├── llava
│ ├── llava_pretrain
│ │ ├── images
│ │ ├── blip_laion_cc_sbu_558k.json
├── coco
│ ├── train2017
├── sam
│ ├── images
├── gqa
│ ├── images
├── ocr_vqa
│ ├── images
├── textvqa
│ ├── train_images
├── vg
│ ├── VG_100K
│ ├── VG_100K_2
├── share_textvqa
│ ├── images
├── web-celebrity
│ ├── images
├── web-landmark
│ ├── images
├── wikiart
│ ├── images
├── text_files
│ ├── llava_v1_5_mix665k.json
│ ├── share-captioner_coco_lcs_sam_1246k_1107.json
│ ├── sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
Train
This section we describe the base recipe.
Hyperparameters
Both hyperparameters used in pretraining and finetuning are provided below.
- Pretraining
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
- Finetuning
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
Pretrain
Replace paths to your paths
Training script with DeepSpeed ZeRO-2: pretrain.sh
.
Finetune
Replace paths to your paths
Training script with DeepSpeed ZeRO-3: finetune.sh
.
Custom-Finetune
Check out our custom finetune using LoRA here.
✏ Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
@misc{zhou2024tinyllava,
title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models},
author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang},
year={2024},
eprint={2402.14289},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
❤️ Community efforts
- Our codebase is built upon the LLaVA project. Great work!
- Our project uses data from the ShareGPT4V project. Great work!
- Downloads last month
- 1,870