downloading error while build model flux.1-dev
when I use deploy command from Amazon sagemaker I get error
2024-12-02T06:09:17.748Z
Traceback (most recent call last):
File "/usr/local/bin/dockerd-entrypoint.py", line 23, in
serving.main()
File "/opt/conda/lib/python3.10/site-packages/sagemaker_huggingface_inference_toolkit/serving.py", line 34, in main
_start_mms()
File "/opt/conda/lib/python3.10/site-packages/retrying.py", line 56, in wrapped_f
return Retrying(*dargs, **dkw).call(f, *args, **kw)
File "/opt/conda/lib/python3.10/site-packages/retrying.py", line 257, in call
return attempt.get(self._wrap_exception)
File "/opt/conda/lib/python3.10/site-packages/retrying.py", line 301, in get
six.reraise(self.value[0], self.value[1], self.value[2])
File "/opt/conda/lib/python3.10/site-packages/six.py", line 719, in reraise
raise value
File "/opt/conda/lib/python3.10/site-packages/retrying.py", line 251, in call
attempt = Attempt(fn(*args, **kwargs), attempt_number, False)
File "/opt/conda/lib/python3.10/site-packages/sagemaker_huggingface_inference_toolkit/serving.py", line 30, in _start_mms
mms_model_server.start_model_server(handler_service=HANDLER_SERVICE)
File "/opt/conda/lib/python3.10/site-packages/sagemaker_huggingface_inference_toolkit/mms_model_server.py", line 81, in start_model_server
storage_dir = _load_model_from_hub(
File "/opt/conda/lib/python3.10/site-packages/sagemaker_huggingface_inference_toolkit/transformers_utils.py", line 212, in _load_model_from_hub
snapshot_download(
File "/opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py", line 294, in snapshot_download
thread_map(
File "/opt/conda/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
File "/opt/conda/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
File "/opt/conda/lib/python3.10/site-packages/tqdm/std.py", line 1182, in iter
for obj in iterable:
File "/opt/conda/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator
yield _result_or_cancel(fs.pop())
File "/opt/conda/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel
return fut.result(timeout)
File "/opt/conda/lib/python3.10/concurrent/futures/_base.py", line 458, in result
return self.__get_result()
File "/opt/conda/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/opt/conda/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/opt/conda/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py", line 268, in _inner_hf_hub_download
return hf_hub_download(
File "/opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py", line 1202, in hf_hub_download
i am having the same error, did you solve it?
hii @pgonzalezb12 , no I just use the gcp vertex ai , instead of sagemaker , there is no need to write code to deploy , they automatically handle that ,