Time series easier, faster, more fun.
Please ⭐ us on GitHub (it takes 2‑seconds and makes a huge difference).
- Single API, multiple engines. Every helper works on
pandasandPolars(many run on NVIDIA cudf/GPU as well). - Productivity first. Visualization, aggregation, feature engineering, anomaly detection, and regime modeling in a couple of lines.
- Performance obsessed. Vectorized Polars support, GPU acceleration (beta), and feature-store style caching.
| Workflow | pytimetk API | Superpower | Docs |
|---|---|---|---|
| Visualization & diagnostics | plot_timeseries, plot_stl_diagnostics, plot_time_series_boxplot, theme_plotly_timetk |
Interactive Plotly charts, STL faceting, distribution-aware plots, Plotly theming helper | Visualization guide |
| Time-aware aggregations | summarize_by_time, apply_by_time, pad_by_time(fillna=…) |
Resample, roll up, and now fill padded rows with a single scalar | Selectors & periods guide |
| Feature engineering | augment_timeseries_signature, augment_rolling, augment_wavelet, feature_store |
Calendar signatures, GPU-ready rolling windows, wavelets, reusable feature sets | Feature engineering reference |
| Anomaly workflows | anomalize, plot_anomalies, plot_anomalies_decomp, plot_anomalies_cleaned |
Detect → diagnose → visualize anomalies without switching libraries | Anomaly docs |
| Finance & regimes | augment_regime_detection (✨ regime_backends extra), augment_macd, … |
HMM-based regime detection with hmmlearn or pomegranate, dozens of indicators | Finance module |
| Polars-native workflows | .tk accessor on pl.DataFrame, engine="polars" on heavy helpers |
Plot, summarize, and engineer features without ever leaving Polars | Polars guide |
| Production extras (beta) | Feature store, MLflow integration, GPU acceleration | Cache expensive transforms, log metadata, or flip a switch for RAPIDS | Production docs |
Install the latest stable version of pytimetk using pip:
pip install pytimetkAlternatively you can install the development version:
pip install --upgrade --force-reinstall git+https://github.com/business-science/pytimetk.gitimport numpy as np
import pandas as pd
import pytimetk as tk
from pytimetk.utils.selection import contains
sales = tk.load_dataset("bike_sales_sample", parse_dates=["order_date"])
# 1. Summaries in one line (Polars engine for speed)
monthly = (
sales.groupby("category_1")
.summarize_by_time(
date_column="order_date",
value_column="total_price",
freq="MS",
agg_func=["sum", "mean"],
engine="polars",
)
)
# 2. Visualize straight from Polars/pandas
monthly.plot_timeseries(
date_column="order_date",
value_column=contains("sum"),
color_column="category_1",
title="Revenue by Category",
plotly_dropdown=True,
)
# 3. Fill gaps + detect anomalies
hourly = (
sales.groupby(["category_1", "order_date"], as_index=False)
.agg(total_price=("total_price", "sum"))
.groupby("category_1")
.pad_by_time(date_column="order_date", freq="1H", fillna=0)
)
anomalies = (
hourly.groupby("category_1")
.anomalize("order_date", "total_price")
.plot_anomalies(date_column="order_date", plotly_dropdown=True)
)- New data visualizations Discover new time series plots like Time Series Box Plots, Regression Plots, Seasonal and Decomposition plots in our upgraded Guide 01.
- Selectors + natural periods guide. Learn how to point at columns with
contains()/starts_with()and specify periods like"2 weeks"or"45 minutes". → Guide 08 - Polars everywhere. Dedicated Polars guide plus
.tkaccessor coverage for plotting, feature engineering, and gap filling. - GPU + Feature Store (beta). Run rolling stats using our RAPIDS cudf guide or cache/track expensive feature sets with metadata and MLflow hooks in our new Feature Store guide.
| Topic | Why read it? |
|---|---|
| Quick Start | Load data, plot, summarize, and forecast-ready features in ~5 minutes. |
| Visualization Guide | Deep dive into plot_timeseries, STL diagnostics, anomaly plots, and Plotly theming. |
| Polars Guide | How to keep data in Polars while still using pytimetk plotting/feature APIs. |
| Selectors & Human Durations | Column selectors, natural-language periods, and new padding/future-frame tricks. |
| Production / GPU | Feature store beta, caching, MLflow logging, and NVIDIA RAPIDS setup. |
| API Reference | Full catalogue of helpers by module. |
import pandas as pd
import pytimetk as tk
df = tk.load_dataset("bike_sales_sample", parse_dates=["order_date"])
(df.groupby("category_2")
.summarize_by_time(
date_column="order_date",
value_column="total_price",
freq="MS",
agg_func=["mean", "sum"],
engine="polars",
))
⚠️ Beta: The Feature Store APIs and on-disk format may change before general availability. We’d love feedback and bug reports.
Persist expensive feature engineering steps once and reuse them everywhere. Register a transform, build it on a dataset, and reload it in any notebook or job with automatic versioning, metadata, and cache hits.
import pandas as pd
import pytimetk as tk
df = tk.load_dataset("bike_sales_sample", parse_dates=["order_date"])
store = tk.FeatureStore()
store.register(
"sales_signature",
lambda data: tk.augment_timeseries_signature(
data,
date_column="order_date",
engine="pandas",
),
default_key_columns=("order_id",),
description="Calendar signatures for sales orders.",
)
result = store.build("sales_signature", df)
print(result.from_cache) # False first run, True on subsequent builds- Supports local disk or any
pyarrowfilesystem (e.g.,s3://,gs://) via theartifact_uriparameter, plus optional file-based locking for concurrent jobs. - Optional MLflow helpers capture feature versions and artifacts with your experiments for reproducible pipelines.
We are in the early stages of development. But it's obvious the potential for pytimetk now in Python. 🐍
- Please ⭐ us on GitHub (it takes 2-seconds and means a lot).
- To make requests, please see our Project Roadmap GH Issue #2. You can make requests there.
- Want to contribute? See our contributing guide here.
