CyberAttackDetection-Python is a project aimed at detecting cyber attacks using machine learning models. This repository contains code for data preprocessing, model training, evaluation, and utilities.
CyberAttackDetection-Python/
├── .github/
│ └── workflows/
│ └── ci.yml
├── models/
│ └── random_forest_model.pkl
│ └── simple_nn_model.pth
├── data/
│ └── raw_data.csv
│ └── processed_data.csv
├── notebooks/
│ └── exploratory_data_analysis.ipynb
│ └── model_training.ipynb
├── src/
│ ├── __init__.py
│ ├── data_preprocessing.py
│ ├── model_training.py
│ ├── model_evaluation.py
│ └── utilities.py
├── tests/
│ └── test_data_preprocessing.py
│ └── test_model_training.py
│ └── test_model_evaluation.py
├── .gitignore
├── .replit
├── README.md
├── main.py
├── poetry.lock
├── pyproject.toml
└── requirements.txt
To get started with this project, follow these steps:
- Clone the repository:
git clone https://github.com/canstralian/CyberAttackDetection-Python.git
- Install the dependencies:
pip install -r requirements.txt
Run the data preprocessing script:
python src/data_preprocessing.py
Train the models:
python src/model_training.py
Evaluate the models:
python src/model_evaluation.py
Contributions are welcome! Please read the contributing guidelines for more information.
This project is licensed under the MIT License. See the LICENSE file for details.