-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add simple script to process results of diff experiments
- Loading branch information
1 parent
6c4007e
commit bf32098
Showing
3 changed files
with
264 additions
and
0 deletions.
There are no files selected for viewing
65 changes: 65 additions & 0 deletions
65
other_methods/sceloss/confident_learning_benchmark_experiments.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
cd ~/sceloss_results | ||
mkdir 0_2 | ||
cd 0_2 | ||
CUDA_VISIBLE_DEVICES=0 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.0__noise_amount__0.2.json' > out_0_2.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 2_2 | ||
cd 2_2 | ||
CUDA_VISIBLE_DEVICES=1 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.2__noise_amount__0.2.json' > out_2_2.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 4_2 | ||
cd 4_2 | ||
CUDA_VISIBLE_DEVICES=2 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.4__noise_amount__0.2.json' > out_4_2.log | ||
|
||
|
||
mkdir ~/sceloss_results | ||
cd ~/sceloss_results | ||
mkdir 6_2 | ||
cd 6_2 | ||
CUDA_VISIBLE_DEVICES=0 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.6__noise_amount__0.2.json' > out_6_2.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 0_4 | ||
cd 0_4 | ||
CUDA_VISIBLE_DEVICES=1 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.0__noise_amount__0.4.json' > out_0_4.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 2_4 | ||
cd 2_4 | ||
CUDA_VISIBLE_DEVICES=2 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.2__noise_amount__0.4.json' > out_2_4.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 4_4 | ||
cd 4_4 | ||
CUDA_VISIBLE_DEVICES=3 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.4__noise_amount__0.4.json' > out_4_4.log | ||
|
||
|
||
cd ~/sceloss_results | ||
mkdir 6_4 | ||
cd 6_4 | ||
CUDA_VISIBLE_DEVICES=0 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.6__noise_amount__0.4.json' > out_6_4.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 0_6 | ||
cd 0_6 | ||
CUDA_VISIBLE_DEVICES=1 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.0__noise_amount__0.6.json' > out_0_6.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 2_6 | ||
cd 2_6 | ||
CUDA_VISIBLE_DEVICES=2 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.2__noise_amount__0.6.json' > out_2_6.log | ||
|
||
cd ~/sceloss_results | ||
mkdir 4_6 | ||
cd 4_6 | ||
CUDA_VISIBLE_DEVICES=3 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.4__noise_amount__0.6.json' > out_4_6.log | ||
|
||
|
||
|
||
cd ~/sceloss_results | ||
mkdir 6_6 | ||
cd 6_6 | ||
CUDA_VISIBLE_DEVICES=0 python3 ~/Dropbox\ \(MIT\)/cgn/SCELoss-Reproduce/train.py --fn '/home/cgn/Dropbox (MIT)/cgn/cleanlab/examples/cifar10/cifar10/cifar10_noisy_labels/cifar10_noisy_labels__frac_zero_noise_rates__0.6__noise_amount__0.6.json' > out_6_6.log | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Use this to read in the scores for SCELoss. take the max score of both models for the fairest comparison." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_scores(filename):\n", | ||
" with open(filename, 'r') as f:\n", | ||
" results = f.readlines()[-6:-2]\n", | ||
" acc1 = float(results[0].split(\"\\t\")[-1].strip())\n", | ||
" acc1best = float(results[1].split(\"\\t\")[-1].strip())\n", | ||
" acc5 = float(results[2].split(\"\\t\")[-1].strip())\n", | ||
" acc5best = float(results[3].split(\"\\t\")[-1].strip())\n", | ||
" return {\n", | ||
" 'acc1': acc1,\n", | ||
" 'acc1best': acc1best,\n", | ||
" 'acc5': acc5,\n", | ||
" 'acc5best': acc5best,\n", | ||
" }" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0_4: 0.7633\n", | ||
"2_2: 0.8753\n", | ||
"6_2: 0.8435\n", | ||
"0_2: 0.8718\n", | ||
"2_4: 0.741\n", | ||
"4_4: 0.6488\n", | ||
"2_6: 0.2866\n", | ||
"4_6: 0.3086\n", | ||
"4_2: 0.8878\n", | ||
"0_6: 0.3304\n", | ||
"6_4: 0.5827\n", | ||
"6_6: 0.2402\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"basedir = '/home/cgn/sceloss_results/'\n", | ||
"for f in [f for f in os.listdir(basedir) if '_' in f]:\n", | ||
" print(f, end=': ')\n", | ||
" result = get_scores(basedir + f +\"/out_{}.log\".format(f))\n", | ||
" print(result['acc1'])\n", | ||
"# model1_score = float(result.split('Model1')[-1][:8])\n", | ||
"# model2_score = float(result.split('Model2')[-1][:8])\n", | ||
"# score = max(model1_score, model2_score)\n", | ||
"# print(score)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0_4: 0.7695\n", | ||
"2_2: 0.8811\n", | ||
"6_2: 0.8435\n", | ||
"0_2: 0.8741\n", | ||
"2_4: 0.7415\n", | ||
"4_4: 0.6571\n", | ||
"2_6: 0.2969\n", | ||
"4_6: 0.3044\n", | ||
"4_2: 0.8895\n", | ||
"0_6: 0.3317\n", | ||
"6_4: 0.5823\n", | ||
"6_6: 0.2443\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"basedir = '/home/cgn/sceloss_results/'\n", | ||
"for f in [f for f in os.listdir(basedir) if '_' in f]:\n", | ||
" print(f, end=': ')\n", | ||
" result = get_scores(basedir + f +\"/out_{}.log\".format(f))\n", | ||
" print(result['acc1'])\n", | ||
"# model1_score = float(result.split('Model1')[-1][:8])\n", | ||
"# model2_score = float(result.split('Model2')[-1][:8])\n", | ||
"# score = max(model1_score, model2_score)\n", | ||
"# print(score)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
|
||
# coding: utf-8 | ||
|
||
# ## Use this to read in the scores for SCELoss. take the max score of both models for the fairest comparison. | ||
|
||
# In[1]: | ||
|
||
|
||
import os | ||
import numpy as np | ||
|
||
|
||
# In[3]: | ||
|
||
|
||
def get_scores(filename): | ||
with open(filename, 'r') as f: | ||
results = f.readlines()[-6:-2] | ||
acc1 = float(results[0].split("\t")[-1].strip()) | ||
acc1best = float(results[1].split("\t")[-1].strip()) | ||
acc5 = float(results[2].split("\t")[-1].strip()) | ||
acc5best = float(results[3].split("\t")[-1].strip()) | ||
return { | ||
'acc1': acc1, | ||
'acc1best': acc1best, | ||
'acc5': acc5, | ||
'acc5best': acc5best, | ||
} | ||
|
||
|
||
# In[4]: | ||
|
||
|
||
basedir = '/home/cgn/sceloss_results/' | ||
for f in [f for f in os.listdir(basedir) if '_' in f]: | ||
print(f, end=': ') | ||
result = get_scores(basedir + f +"/out_{}.log".format(f)) | ||
print(result['acc1']) | ||
# model1_score = float(result.split('Model1')[-1][:8]) | ||
# model2_score = float(result.split('Model2')[-1][:8]) | ||
# score = max(model1_score, model2_score) | ||
# print(score) | ||
|
||
|
||
# In[22]: | ||
|
||
|
||
basedir = '/home/cgn/sceloss_results/' | ||
for f in [f for f in os.listdir(basedir) if '_' in f]: | ||
print(f, end=': ') | ||
result = get_scores(basedir + f +"/out_{}.log".format(f)) | ||
print(result['acc1']) | ||
# model1_score = float(result.split('Model1')[-1][:8]) | ||
# model2_score = float(result.split('Model2')[-1][:8]) | ||
# score = max(model1_score, model2_score) | ||
# print(score) | ||
|