SegFormer (b0-sized) model fine-tuned on sidewalk-semantic dataset

SegFormer model fine-tuned on segments/sidewalk-semantic at resolution 512x512. It was introduced in the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Xie et al. and first released in this repository.

Model description

SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.

Intended uses & limitations

You can use the raw model for semantic segmentation. See the model hub to look for fine-tuned versions on a task that interests you.

How to use

Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:

from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests

feature_extractor = SegformerFeatureExtractor(reduce_labels=True)
model = SegformerForSemanticSegmentation.from_pretrained("ChainYo/segformer-sidewalk")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)

For more code examples, we refer to the documentation.

Downloads last month
7
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train chainyo/segformer-sidewalk