Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 41 additions & 1 deletion easytorch/core/optimizer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,14 @@ def build_optim(optim_cfg: Dict, model: nn.Module) -> optim.Optimizer:
optim_cfg (Dict): optimizer config
model (nn.Module): model defined by user

Option:
Add parameters with special optimizer hyperparameters by set _optim attribute
example:
net = nn.Parameter(torch.zeros(10))
setattr(net, "_optim", {'lr': 0.01,"weight_decay": 0.0})

Information of optimizer will be printed. You can check it.

Returns:
optimizer (optim.Optimizer)
"""
Expand All @@ -48,8 +56,40 @@ def build_optim(optim_cfg: Dict, model: nn.Module) -> optim.Optimizer:
optim_type = getattr(optim, optim_cfg['TYPE'])
else:
optim_type = getattr(easyoptim, optim_cfg['TYPE'])

# Obtain general parameters
optim_param = optim_cfg['PARAM'].copy()
optimizer = optim_type(model.parameters(), **optim_param)

# All parameters in the model
all_parameters = list(model.parameters())

# General parameters don't contain the special _optim key
params = [p for p in all_parameters if not hasattr(p, "_optim")]

# Create an optimizer with the general parameters
optimizer = optim_type(params, **optim_param)

# Add parameters with special hyperparameters
hps = [getattr(p, "_optim") for p in all_parameters if hasattr(p, "_optim")]
hps = [
# Create unique special hyperparameters dicts
dict(s) for s in sorted(list(dict.fromkeys(frozenset(hp.items()) for hp in hps)))
]
for hp in hps:
params = [p for p in all_parameters if getattr(p, "_optim", None) == hp]
optimizer.add_param_group(
{"params": params, **hp}
)

# Print optimizer info
keys = sorted(set([k for hp in hps for k in hp.keys()]))
for i, g in enumerate(optimizer.param_groups):
group_hps = {k: g.get(k, None) for k in keys}
print(' | '.join([
f"Optimizer group {i}",
f"{len(g['params'])} tensors",
] + [f"{k} {v}" for k, v in group_hps.items()]))

return optimizer


Expand Down
42 changes: 39 additions & 3 deletions easytorch/core/runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,28 @@
class Runner(metaclass=ABCMeta):
"""Base EasyTorch Runner
"""
"""Base EasyTorch Runner
init_logger()
define_model() unrealized
build_train_dataset unrealized
build_val_dataset() unrealized
get_ckpt_path()
build_model()
get_ckpt_path()
save_model()
load_model_resume()
load_model()
train()
init_training()
on_epoch_start()
on_training_end() only close tensorboard
train_iters() unrealized
backward()
validate()
init_validation()
on_validating_start() unrealized
on_validating_end() unrealized
"""

def __init__(self, cfg: Config):
# default logger
Expand Down Expand Up @@ -362,6 +384,16 @@ def train(self, cfg: Config):

self.on_training_end()

def init_optim(self, cfg: Config):
"""Initialize optimizer

Args:
cfg (Dict): config
"""
# create lr_scheduler
self.optim = build_optim(cfg['TRAIN.OPTIM'], self.model)
self.logger.info('Set optim: {}'.format(self.optim))

def init_lr_scheduler(self, cfg: Config):
"""Initialize lr_scheduler

Expand Down Expand Up @@ -397,8 +429,7 @@ def init_training(self, cfg: Config):
self.register_epoch_meter('train_time', 'train', '{:.2f} (s)', plt=False)

# create optim
self.optim = build_optim(cfg['TRAIN.OPTIM'], self.model)
self.logger.info('Set optim: {}'.format(self.optim))
self.init_optim(cfg)

# create lr_scheduler
self.init_lr_scheduler(cfg)
Expand Down Expand Up @@ -433,7 +464,10 @@ def on_epoch_start(self, epoch: int):
self.logger.info('Epoch {:d} / {:d}'.format(epoch, self.num_epochs))
# update lr meter
if self.scheduler is not None:
self.update_epoch_meter('lr', self.scheduler.get_last_lr()[0])
try:
self.update_epoch_meter('lr', self.scheduler.get_last_lr()[0])
except NotImplementedError:
self.update_epoch_meter('lr', self.scheduler.get_lr()[0])

# set epoch for sampler in distributed mode
# see https://pytorch.org/docs/stable/data.html
Expand Down Expand Up @@ -611,6 +645,8 @@ def save_best_model(self, epoch: int, metric_name: str, greater_best: bool = Tru
'{}_best_{}.pt'.format(self.model_name, metric_name.replace('/', '_'))
)
save_ckpt(ckpt_dict, ckpt_path, self.logger)
return True
return False

@master_only
def register_epoch_meter(self, name, meter_type, fmt='{:f}', plt=True):
Expand Down