⚡️ Speed up method DataCol.get_atom_string by 13%
#323
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
📄 13% (0.13x) speedup for
DataCol.get_atom_stringinpandas/io/pytables.py⏱️ Runtime :
497 microseconds→441 microseconds(best of28runs)📝 Explanation and details
The optimization caches the
tables.StringColclass reference to eliminate repeated attribute lookups in theget_atom_stringmethod.What was optimized:
_Table_StringColthat stores thetables.StringColclass reference_tables()to populate this cache during the initial importget_atom_string()to use the cached reference instead of calling_tables().StringColevery timeWhy this speeds up the code:
The original code called
_tables().StringColon every invocation ofget_atom_string(). This involved:_table_mod_tables()StringColThe optimization eliminates steps 2-3 for subsequent calls by caching the
StringColclass reference directly. Python attribute lookups on module objects are relatively expensive operations, and avoiding them in frequently called methods provides measurable speedup.Performance impact:
get_atom_string()spends only 2.4% of its time on the actualStringColinstantiation (line withreturn _Table_StringCol(...)) versus nearly 100% in the originalWhen this optimization helps most:
This optimization is most beneficial when
get_atom_string()is called frequently, as each call now avoids the module attribute lookup overhead. The test results show consistent improvements across all scenarios, suggesting this method is likely used in data processing pipelines where string column creation is repeated many times.✅ Correctness verification report:
🌀 Generated Regression Tests and Runtime
import pytest
from pandas.io.pytables import DataCol
--- Minimal mock for _tables().StringCol, since we cannot import PyTables ---
class MockStringCol:
def init(self, itemsize, shape):
self.itemsize = itemsize
self.shape = shape
from pandas.io.pytables import DataCol
--- Unit tests ---
1. Basic Test Cases
def test_basic_scalar_shape():
# shape is (1,), itemsize is 10
codeflash_output = DataCol.get_atom_string((1,), 10); result = codeflash_output # 19.9μs -> 17.1μs (16.3% faster)
def test_basic_vector_shape():
# shape is (5,), itemsize is 20
codeflash_output = DataCol.get_atom_string((5,), 20); result = codeflash_output # 17.2μs -> 15.1μs (14.2% faster)
def test_basic_list_shape():
# shape is [3], itemsize is 8
codeflash_output = DataCol.get_atom_string([3], 8); result = codeflash_output # 16.1μs -> 14.2μs (13.7% faster)
def test_basic_large_itemsize():
# shape is (2,), itemsize is 100
codeflash_output = DataCol.get_atom_string((2,), 100); result = codeflash_output # 15.8μs -> 13.3μs (18.4% faster)
2. Edge Test Cases
def test_zero_itemsize_raises():
# itemsize is 0, should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((1,), 0) # 13.5μs -> 11.7μs (15.2% faster)
def test_negative_itemsize_raises():
# itemsize is negative, should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((1,), -5) # 5.31μs -> 5.06μs (4.96% faster)
def test_zero_shape_raises():
# shape[0] is 0, should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((0,), 10) # 6.78μs -> 6.34μs (6.96% faster)
def test_negative_shape_raises():
# shape[0] is negative, should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((-3,), 10) # 6.94μs -> 6.07μs (14.3% faster)
def test_shape_not_tuple_or_list_raises():
# shape is not tuple/list, should raise TypeError
with pytest.raises(TypeError):
DataCol.get_atom_string(5, 10) # 2.03μs -> 1.56μs (30.1% faster)
def test_shape_with_extra_dimensions():
# shape is (10, 2), should use shape[0] only
codeflash_output = DataCol.get_atom_string((10, 2), 5); result = codeflash_output # 24.0μs -> 21.5μs (11.6% faster)
def test_shape_with_float_dimension_raises():
# shape[0] is float, should raise TypeError
with pytest.raises(TypeError):
DataCol.get_atom_string((3.5,), 10) # 9.57μs -> 9.39μs (1.94% faster)
def test_large_shape_and_itemsize():
# shape is (999,), itemsize is 512
codeflash_output = DataCol.get_atom_string((999,), 512); result = codeflash_output # 23.6μs -> 21.0μs (12.6% faster)
def test_maximum_allowed_shape():
# shape is at upper bound (1000,), itemsize is 1
codeflash_output = DataCol.get_atom_string((1000,), 1); result = codeflash_output # 17.1μs -> 15.1μs (13.6% faster)
def test_maximum_allowed_itemsize():
# itemsize is at upper bound (1000), shape is (1,)
codeflash_output = DataCol.get_atom_string((1,), 1000); result = codeflash_output # 16.3μs -> 14.6μs (12.2% faster)
def test_multiple_large_calls():
# Call multiple times with varying large values
for i in range(900, 1000, 10):
codeflash_output = DataCol.get_atom_string((i,), i); res = codeflash_output # 55.3μs -> 48.8μs (13.5% faster)
def test_large_shape_list():
# shape provided as large list
shape = [999]
codeflash_output = DataCol.get_atom_string(shape, 256); result = codeflash_output # 14.8μs -> 13.3μs (11.4% faster)
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest
from pandas.io.pytables import DataCol
Minimal mock for _tables().StringCol since we cannot import pytables or pandas
class MockStringCol:
def init(self, itemsize, shape):
self.itemsize = itemsize
self.shape = shape
from pandas.io.pytables import DataCol
------------------- UNIT TESTS -------------------
Basic Test Cases
def test_basic_single_element_shape():
# Test with shape of length 1 and positive itemsize
codeflash_output = DataCol.get_atom_string((10,), 8); atom = codeflash_output # 14.9μs -> 13.6μs (9.75% faster)
def test_basic_list_shape():
# Test with shape as a list
codeflash_output = DataCol.get_atom_string([5], 4); atom = codeflash_output # 16.0μs -> 13.2μs (21.7% faster)
def test_basic_different_itemsize():
# Test with different itemsize
codeflash_output = DataCol.get_atom_string((3,), 16); atom = codeflash_output # 15.1μs -> 13.6μs (11.5% faster)
def test_basic_large_shape_small_itemsize():
# Test with large shape and small itemsize
codeflash_output = DataCol.get_atom_string((999,), 1); atom = codeflash_output # 15.3μs -> 14.1μs (8.58% faster)
Edge Test Cases
def test_edge_shape_negative():
# shape[0] < 0 should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((-1,), 5) # 9.03μs -> 7.89μs (14.4% faster)
def test_edge_itemsize_zero():
# itemsize == 0 should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((10,), 0) # 17.4μs -> 15.6μs (11.6% faster)
def test_edge_itemsize_negative():
# itemsize < 0 should raise ValueError
with pytest.raises(ValueError):
DataCol.get_atom_string((10,), -4) # 5.23μs -> 5.07μs (3.28% faster)
def test_edge_shape_not_tuple_or_list():
# shape is not a tuple or list
with pytest.raises(TypeError):
DataCol.get_atom_string(10, 5) # 1.73μs -> 1.38μs (25.2% faster)
def test_edge_shape0_not_int():
# shape[0] is not int
with pytest.raises(TypeError):
DataCol.get_atom_string((3.5,), 5) # 11.3μs -> 10.8μs (4.64% faster)
def test_edge_shape_tuple_with_extra_elements():
# shape with extra elements (only shape[0] is used)
codeflash_output = DataCol.get_atom_string((7, 2, 3), 9); atom = codeflash_output # 23.6μs -> 21.2μs (11.6% faster)
Large Scale Test Cases
def test_large_scale_max_shape():
# Test with the largest allowed shape (999)
codeflash_output = DataCol.get_atom_string((999,), 32); atom = codeflash_output # 17.4μs -> 15.4μs (13.6% faster)
def test_large_scale_max_itemsize():
# Test with large itemsize
codeflash_output = DataCol.get_atom_string((100,), 999); atom = codeflash_output # 16.4μs -> 14.6μs (13.0% faster)
def test_large_scale_many_calls():
# Test multiple calls with varying inputs
for i in range(1, 1001, 100):
codeflash_output = DataCol.get_atom_string((i,), i); atom = codeflash_output # 55.3μs -> 48.0μs (15.2% faster)
def test_large_scale_shape_and_itemsize():
# Test with shape and itemsize both at max allowed
codeflash_output = DataCol.get_atom_string((999,), 999); atom = codeflash_output # 14.3μs -> 12.9μs (10.8% faster)
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
To edit these changes
git checkout codeflash/optimize-DataCol.get_atom_string-mhvzlayzand push.