⚡️ Speed up method DataIndexableCol.get_atom_data by 11%
#327
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
📄 11% (0.11x) speedup for
DataIndexableCol.get_atom_datainpandas/io/pytables.py⏱️ Runtime :
614 microseconds→554 microseconds(best of16runs)📝 Explanation and details
The optimization introduces a module-level cache (
_atom_coltype_cache) that eliminates redundant expensivegetattr(_tables(), col_name)calls in theget_atom_coltypemethod.Key optimization:
getattr(_tables(), col_name)accounts for 99.5% of the runtime (42.87ms out of 43.08ms total). This expensive operation fetches PyTables column type classes from the tables module.kindis requested multiple times, the cache returns the previously resolved column type immediately, avoiding the costlygetattrcall entirely.Performance analysis from test results:
test_edge_case_sensitivityshows 25.2% improvement on the secondint16call).test_large_scale_many_kinds,test_large_scale_shape_variations) show consistent 12-18% improvements, indicating the cache scales well.Why this works:
PyTables column types are static class objects that don't change during runtime. The
_tables()function call and subsequentgetattr()performs module attribute resolution every time, which involves Python's attribute lookup mechanism. Caching these resolved types in a simple dictionary provides O(1) access after the first lookup.The 10% overall speedup comes from eliminating the expensive
getattr(_tables(), ...)calls on cache hits, with the optimization being most effective in workloads that repeatedly use the same column types - a common pattern in data processing pipelines.✅ Correctness verification report:
🌀 Generated Regression Tests and Runtime
import pytest
from pandas.io.pytables import DataIndexableCol
function to test (from prompt)
[The DataIndexableCol.get_atom_data and supporting classes are assumed to be defined above, as in the prompt.]
---- UNIT TESTS FOR DataIndexableCol.get_atom_data ----
Basic Test Cases
def test_basic_int32():
"""Test basic int32 kind returns Int32Col instance."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(10,), kind="int32"); atom = codeflash_output # 19.4μs -> 17.3μs (12.1% faster)
def test_basic_float64():
"""Test basic float64 kind returns Float64Col instance."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(5,), kind="float64"); atom = codeflash_output # 17.5μs -> 15.0μs (16.8% faster)
def test_basic_bool():
"""Test basic bool kind returns BoolCol instance."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(1,), kind="bool"); atom = codeflash_output # 16.2μs -> 13.7μs (18.8% faster)
def test_basic_uint8():
"""Test basic uint8 kind returns UInt8Col instance."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(2,), kind="uint8"); atom = codeflash_output # 21.2μs -> 19.1μs (11.2% faster)
Edge Test Cases
def test_edge_period_kind():
"""Test period kind returns Int64Col instance (special case)."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(1,), kind="period[D]"); atom = codeflash_output # 16.6μs -> 14.6μs (13.3% faster)
def test_edge_uint64():
"""Test uint64 kind returns UInt64Col instance."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(1,), kind="uint64"); atom = codeflash_output # 16.2μs -> 13.9μs (16.4% faster)
def test_edge_case_sensitivity():
"""Test kind is case-sensitive and capitalizes correctly."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(1,), kind="float32"); atom = codeflash_output # 16.8μs -> 15.1μs (11.5% faster)
codeflash_output = DataIndexableCol.get_atom_data(shape=(1,), kind="int16"); atom = codeflash_output # 8.53μs -> 6.82μs (25.2% faster)
def test_edge_invalid_kind():
"""Test invalid kind raises AttributeError (not found in tables)."""
# Should raise AttributeError because 'FakeCol' does not exist
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data(shape=(1,), kind="fake") # 4.49μs -> 5.29μs (15.1% slower)
def test_edge_empty_shape():
"""Test that shape argument is ignored and atom is always scalar."""
codeflash_output = DataIndexableCol.get_atom_data(shape=(), kind="int32"); atom = codeflash_output # 17.6μs -> 14.8μs (18.8% faster)
def test_edge_kind_with_spaces():
"""Test kind with extra spaces raises AttributeError."""
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data(shape=(1,), kind=" int32 ") # 4.12μs -> 5.02μs (17.9% slower)
def test_edge_kind_as_none():
"""Test kind=None raises TypeError (cannot capitalize None)."""
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data(shape=(1,), kind=None) # 2.27μs -> 2.54μs (10.5% slower)
def test_large_scale_many_kinds():
"""Test all supported kinds in a reasonable set."""
# List of supported kinds in PyTables
kinds = [
"int8", "int16", "int32", "int64",
"uint8", "uint16", "uint32", "uint64",
"float32", "float64", "bool", "string"
]
for kind in kinds:
codeflash_output = DataIndexableCol.get_atom_data(shape=(100,), kind=kind); atom = codeflash_output
# The returned class name should match the expected PyTables Col
if kind.startswith("uint"):
expected = f"UInt{kind[4:]}Col"
else:
expected = f"{kind.capitalize()}Col"
def test_large_scale_period_kinds():
"""Test many period kinds map to Int64Col."""
for freq in ["D", "M", "Y", "Q", "H"]:
codeflash_output = DataIndexableCol.get_atom_data(shape=(100,), kind=f"period[{freq}]"); atom = codeflash_output # 36.7μs -> 32.0μs (14.4% faster)
def test_large_scale_randomized():
"""Test 100 different valid kinds and shapes."""
# Only use supported kinds and shapes
supported_kinds = [
"int8", "int16", "int32", "int64",
"uint8", "uint16", "uint32", "uint64",
"float32", "float64", "bool", "string"
]
for i in range(100):
kind = supported_kinds[i % len(supported_kinds)]
shape = (i + 1,)
codeflash_output = DataIndexableCol.get_atom_data(shape=shape, kind=kind); atom = codeflash_output
if kind.startswith("uint"):
expected = f"UInt{kind[4:]}Col"
else:
expected = f"{kind.capitalize()}Col"
def test_large_scale_shape_argument_ignored():
"""Test that shape argument does not affect atom type or shape."""
for shape in [(1,), (10,), (100,), (999,)]:
codeflash_output = DataIndexableCol.get_atom_data(shape=shape, kind="int32"); atom = codeflash_output # 35.2μs -> 29.9μs (17.7% faster)
def test_large_scale_edge_invalid_kinds():
"""Test 10 invalid kinds all raise AttributeError."""
for i in range(10):
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data(shape=(1,), kind=f"invalid{i}")
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest
from pandas.io.pytables import DataIndexableCol
function to test (from pandas/io/pytables.py, simplified for testing)
class DummyCol:
"""Dummy Col class to simulate PyTables Cols for testing."""
def init(self):
pass
class UInt8Col(DummyCol): pass
class UInt16Col(DummyCol): pass
class UInt32Col(DummyCol): pass
class UInt64Col(DummyCol): pass
class Int64Col(DummyCol): pass
class FloatCol(DummyCol): pass
class StringCol(DummyCol): pass
class BoolCol(DummyCol): pass
class DateCol(DummyCol): pass
class ComplexCol(DummyCol): pass
from pandas.io.pytables import DataIndexableCol
unit tests
---------------------------
1. Basic Test Cases
---------------------------
def test_basic_uint8():
# Test with kind 'uint8' returns UInt8Col instance
codeflash_output = DataIndexableCol.get_atom_data((10,), "uint8"); atom = codeflash_output # 18.8μs -> 16.2μs (15.8% faster)
def test_basic_uint16():
# Test with kind 'uint16' returns UInt16Col instance
codeflash_output = DataIndexableCol.get_atom_data((5,), "uint16"); atom = codeflash_output # 16.5μs -> 15.0μs (10.1% faster)
def test_basic_period():
# Test with kind 'period[D]' returns Int64Col instance (period is mapped to Int64Col)
codeflash_output = DataIndexableCol.get_atom_data((1,), "period[D]"); atom = codeflash_output # 14.8μs -> 13.2μs (12.5% faster)
def test_basic_float():
# Test with kind 'float' returns FloatCol instance
codeflash_output = DataIndexableCol.get_atom_data((3, 3), "float"); atom = codeflash_output # 20.2μs -> 18.2μs (11.3% faster)
def test_basic_bool():
# Test with kind 'bool' returns BoolCol instance
codeflash_output = DataIndexableCol.get_atom_data((1,), "bool"); atom = codeflash_output # 20.7μs -> 18.5μs (11.4% faster)
def test_edge_uint64():
# Test with kind 'uint64' returns UInt64Col instance
codeflash_output = DataIndexableCol.get_atom_data((0,), "uint64"); atom = codeflash_output # 23.5μs -> 20.3μs (15.4% faster)
def test_edge_uint32():
# Test with kind 'uint32' returns UInt32Col instance
codeflash_output = DataIndexableCol.get_atom_data((), "uint32"); atom = codeflash_output # 16.9μs -> 15.4μs (9.48% faster)
def test_edge_shape_none():
# Test with shape None (should not affect result)
codeflash_output = DataIndexableCol.get_atom_data(None, "float"); atom = codeflash_output # 19.7μs -> 18.8μs (4.85% faster)
def test_edge_shape_empty_tuple():
# Test with empty shape tuple
codeflash_output = DataIndexableCol.get_atom_data((), "int64"); atom = codeflash_output # 16.3μs -> 14.2μs (15.0% faster)
def test_edge_kind_case_insensitive():
# Test with kind in different case (should capitalize only first letter)
codeflash_output = DataIndexableCol.get_atom_data((1,), "Float"); atom = codeflash_output # 18.5μs -> 16.4μs (12.9% faster)
def test_edge_kind_with_spaces():
# Test with kind containing spaces (should raise AttributeError)
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data((1,), "float col") # 4.20μs -> 5.39μs (22.2% slower)
def test_edge_kind_unexpected():
# Test with unrecognized kind (should raise AttributeError)
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data((1,), "notacol") # 4.41μs -> 5.03μs (12.4% slower)
def test_edge_kind_period_lowercase():
# Test with kind 'period' (no [D]), should still return Int64Col
codeflash_output = DataIndexableCol.get_atom_data((1,), "period"); atom = codeflash_output # 16.9μs -> 16.1μs (4.72% faster)
def test_edge_kind_period_uppercase():
# Test with kind 'Period' (capitalized), should NOT match 'period', so should raise
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data((1,), "Period") # 3.91μs -> 4.75μs (17.6% slower)
def test_edge_kind_leading_trailing_spaces():
# Test with kind with leading/trailing spaces (should raise AttributeError)
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data((1,), " float ") # 5.03μs -> 5.63μs (10.7% slower)
def test_edge_kind_numeric():
# Test with kind that is numeric string (should look for '1234Col', should raise)
with pytest.raises(AttributeError):
DataIndexableCol.get_atom_data((1,), "1234") # 4.30μs -> 4.83μs (11.0% slower)
---------------------------
3. Large Scale Test Cases
---------------------------
def test_large_scale_many_kinds():
# Test all supported uint kinds in a loop
for k in ["uint8", "uint16", "uint32", "uint64"]:
codeflash_output = DataIndexableCol.get_atom_data((1000,), k); atom = codeflash_output # 40.2μs -> 34.2μs (17.6% faster)
def test_large_scale_many_calls():
# Test calling get_atom_data 100 times with alternating kinds
for i in range(100):
kind = "float" if i % 2 == 0 else "string"
codeflash_output = DataIndexableCol.get_atom_data((100,), kind); atom = codeflash_output
if kind == "float":
pass
else:
pass
def test_large_scale_shape_variations():
# Test with a variety of shapes (including large ones)
shapes = [(1000,), (100, 10), (10, 10, 10), (999,)]
for shape in shapes:
codeflash_output = DataIndexableCol.get_atom_data(shape, "uint16"); atom = codeflash_output # 34.1μs -> 28.8μs (18.6% faster)
def test_large_scale_edge_kind_period():
# Test period kinds with many different suffixes
for suffix in ["[D]", "[M]", "[Y]", "[S]", "[H]", "[min]", "[us]"]:
codeflash_output = DataIndexableCol.get_atom_data((100,), f"period{suffix}"); atom = codeflash_output # 33.9μs -> 30.3μs (12.1% faster)
def test_large_scale_edge_kind_case_mixture():
# Test with many different case variations of valid kinds
for kind in ["Float", "FLOAT", "fLoAt"]:
# Only the first letter is capitalized in the code, so 'FloatCol' will be looked up
codeflash_output = DataIndexableCol.get_atom_data((10,), kind); atom = codeflash_output # 29.3μs -> 26.5μs (10.7% faster)
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
To edit these changes
git checkout codeflash/optimize-DataIndexableCol.get_atom_data-mhw1hmiyand push.