Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9643
  • Wer: 0.5037
  • Cer: 0.1278

Evaluation

The model can be evaluated using the attached eval.py script:

python eval.py --model_id comodoro/wav2vec2-xls-r-300m-hsb-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config hsb

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.3121 19.35 1200 3.2059 1.0 1.0
2.6525 38.71 2400 1.1324 0.9387 0.3204
1.3644 58.06 3600 0.8767 0.8099 0.2271
1.093 77.42 4800 0.8739 0.7603 0.2090
0.9546 96.77 6000 0.8454 0.6983 0.1882
0.8554 116.13 7200 0.8197 0.6484 0.1708
0.775 135.48 8400 0.8452 0.6345 0.1681
0.7167 154.84 9600 0.8551 0.6241 0.1631
0.6609 174.19 10800 0.8442 0.5821 0.1531
0.616 193.55 12000 0.8892 0.5864 0.1527
0.5815 212.9 13200 0.8839 0.5772 0.1503
0.55 232.26 14400 0.8905 0.5665 0.1436
0.5173 251.61 15600 0.8995 0.5471 0.1417
0.4969 270.97 16800 0.8633 0.5325 0.1334
0.4803 290.32 18000 0.9074 0.5253 0.1352
0.4596 309.68 19200 0.9159 0.5146 0.1294
0.4415 329.03 20400 0.9055 0.5189 0.1314
0.434 348.39 21600 0.9435 0.5208 0.1314
0.4199 367.74 22800 0.9199 0.5136 0.1290
0.4008 387.1 24000 0.9342 0.5174 0.1303
0.4051 406.45 25200 0.9436 0.5132 0.1292
0.3861 425.81 26400 0.9417 0.5084 0.1283
0.3738 445.16 27600 0.9573 0.5079 0.1299
0.3768 464.52 28800 0.9682 0.5062 0.1289
0.3647 483.87 30000 0.9643 0.5037 0.1278

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train comodoro/wav2vec2-xls-r-300m-hsb-cv8

Evaluation results