Skip to content

conscious-data/contextualize

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

contextualize

contextualize is a package to quickly retrieve and format file contents for use with LLMs.

Installation

You can install the package using pip:

pip install contextualize

or pipx for using the CLI globally:

pipx install contextualize

Usage (reference.py)

Define FileReference objects for specified file paths and optional ranges.

  • set range to a tuple of line numbers to include only a portion of the file, e.g. range=(1, 10)
  • set format to "md" (default) or "xml" to wrap file contents in Markdown code blocks or <file> tags
  • set label to "relative" (default), "name", or "ext" to determine what label is affixed to the enclosing Markdown/XML string
    • "relative" will use the relative path from the current working directory
    • "name" will use the file name only
    • "ext" will use the file extension only

Retrieve wrapped contents from the output attribute.

CLI

A CLI (cli.py) is provided to print file contents to the console from the command line.

  • cat: Prepare and concatenate file references

    • paths: Positional arguments for target file(s) or directories
    • --ignore: File(s) to ignore (optional)
    • --format: Output format (md, xml, or shell; default is md):
      • shell mimics cat output in a live shell prompt
      • xml encloses file contents in <file> tags
      • md encloses file contents in triple backticks
    • --label: Label style (relative for relative file path, name for file name only, ext for file extension only; default is relative)
    • --output: Output target (console (default), clipboard)
    • --output-file: Output file path (optional, compatible with --output clipboard)
  • ls: List token counts

    • paths: Positional arguments for target file(s) or directories to process
    • --openai-encoding: OpenAI encoding to use for tokenization, e.g., cl100k_base (default), p50k_base, r50k_base
    • --openai-model: OpenAI model (e.g., gpt-3.5-turbo/gpt-4 (default), text-davinci-003, code-davinci-002) to determine which encoding to use for tokenization.
    • --anthropic-model: Anthropic model to use for token counting (e.g., claude-3-5-sonnet-latest)

Examples

  • cat:

    • contextualize cat README.md will print the wrapped contents of README.md to the console with default settings (Markdown format, relative path label).
    • contextualize cat README.md --format xml will print the wrapped content of README.md to the console with XML format.
    • contextualize cat README.md --format shell will print the content as if a user is running cat README.md in a live shell prompt.
    • contextualize cat contextualize/ dev/ README.md --format xml will prepare file references for files in the contextualize/ and dev/ directories and README.md, and print each file’s contents (wrapped in corresponding XML tags) to the console.
  • ls:

    • contextualize ls README.md will count and print the number of tokens in README.md using the default cl100k_base encoding, unless ANTHROPIC_API_KEY is set, in which case the Anthropic token counting API will be used.
    • contextualize ls contextualize/ --openai-model text-davinci-003 will count and print the number of tokens in each file in the contextualize/ directory using the p50k_base encoding associated with the text-davinci-003 model, then print the total tokens for all processed files.

About

LLM codegen prompt/context preparation utility

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages