工程基于以下数据集进行设计: 数据集-Kaggel
用自采集数据集(约3000组特征序列)构建训练集和测试集,模型搭载在树莓派3B上实时运行,acc 96%
-
python 3.7.3
-
torch 1.1.0
-
torchvision 0.3.0
-
Pillow
-
Sense-HAT-B(使用九轴传感器)
-
accelerometer
-
gyroscope
-
classi.py : load your own dataset and train your model
-
ICM20948.py : run in raspberry pi to get sensor's data
-
MakeANewDataset.py : create Feature Engineering
-
run.py : run in raspberry pi,scratch datas,calculate your feature and classification.
-
visdo.py : Monitoring the training process in tensorboard
-
visualble.py : Draw your model as a flowchart
1.登录
username:pi
passwd :yahboom
2.run
cd ~/pycharmproject/censorcal/model23
sudo python 422.py
目前每个动作的特征序列上共有561个特征值,许多特征是无用的,可以用特征工程知识进行特征选择,在数据预处理时做好特征清理工作,提高计算效率