Automatic generation of marshmallow schemas from dataclasses.
from dataclasses import dataclass, field
from typing import List, Optional
import marshmallow_dataclass
import marshmallow.validate
@dataclass
class Building:
    # field metadata is used to instantiate the marshmallow field
    height: float = field(metadata={"validate": marshmallow.validate.Range(min=0)})
    name: str = field(default="anonymous")
@dataclass
class City:
    name: Optional[str]
    buildings: List[Building] = field(default_factory=list)
CitySchema = marshmallow_dataclass.class_schema(City)
city = CitySchema().load(
    {"name": "Paris", "buildings": [{"name": "Eiffel Tower", "height": 324}]}
)
# => City(name='Paris', buildings=[Building(height=324.0, name='Eiffel Tower')])
city_dict = CitySchema().dump(city)
# => {'name': 'Paris', 'buildings': [{'name': 'Eiffel Tower', 'height': 324.0}]}Using schemas in Python often means having both a class to represent your data and a class to represent its schema, which results in duplicated code that could fall out of sync. As of Python 3.6, types can be defined for class members, which allows libraries to generate schemas automatically.
Therefore, you can document your APIs in a way that allows you to statically check that the code matches the documentation.
This package is hosted on PyPI.
pip3 install marshmallow-dataclassYou may optionally install the following extras:
enum: for translating python enums to marshmallow-enum.union: for translating pythonUniontypes to union fields.
pip3 install "marshmallow-dataclass[enum,union]"marshmallow-dataclass no longer supports marshmallow 2.
Install marshmallow_dataclass<6.0 if you need marshmallow 2 compatibility.
Use the class_schema
function to generate a marshmallow Schema
class from a dataclass.
from dataclasses import dataclass
from datetime import date
import marshmallow_dataclass
@dataclass
class Person:
    name: str
    birth: date
PersonSchema = marshmallow_dataclass.class_schema(Person)To pass arguments to the generated marshmallow fields (e.g., validate, load_only, dump_only, etc.),
pass them to the metadata argument of the
field function.
from dataclasses import dataclass, field
import marshmallow_dataclass
import marshmallow.validate
@dataclass
class Person:
    name: str = field(
        metadata=dict(description="The person's first name", load_only=True)
    )
    height: float = field(metadata=dict(validate=marshmallow.validate.Range(min=0)))
PersonSchema = marshmallow_dataclass.class_schema(Person)marshmallow_dataclass provides a @dataclass decorator that behaves like the standard library's
@dataclasses.dataclass and adds a Schema attribute with the generated marshmallow
Schema.
# Use marshmallow_dataclass's @dataclass shortcut
from marshmallow_dataclass import dataclass
@dataclass
class Point:
    x: float
    y: float
Point.Schema().dump(Point(4, 2))
# => {'x': 4, 'y': 2}Note: Since the .Schema property is added dynamically, it can confuse type checkers.
To avoid that, you can declare Schema as a ClassVar.
from typing import ClassVar, Type
from marshmallow_dataclass import dataclass
from marshmallow import Schema
@dataclass
class Point:
    x: float
    y: float
    Schema: ClassVar[Type[Schema]] = SchemaIt is also possible to derive all schemas from your own
base Schema class
(see marshmallow's documentation about extending Schema).
This allows you to implement custom (de)serialization
behavior, for instance specifying a custom mapping between your classes and marshmallow fields,
or renaming fields on serialization.
class BaseSchema(marshmallow.Schema):
    TYPE_MAPPING = {CustomType: CustomField, List: CustomListField}
class Sample:
    my_custom: CustomType
    my_custom_list: List[int]
SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=BaseSchema)
# SampleSchema now serializes my_custom using the CustomField marshmallow field
# and serializes my_custom_list using the CustomListField marshmallow fieldimport marshmallow
import marshmallow_dataclass
class UppercaseSchema(marshmallow.Schema):
    """A Schema that marshals data with uppercased keys."""
    def on_bind_field(self, field_name, field_obj):
        field_obj.data_key = (field_obj.data_key or field_name).upper()
class Sample:
    my_text: str
    my_int: int
SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=UppercaseSchema)
SampleSchema().dump(Sample(my_text="warm words", my_int=1))
# -> {"MY_TEXT": "warm words", "MY_INT": 1}You can also pass base_schema to marshmallow_dataclass.dataclass.
@marshmallow_dataclass.dataclass(base_schema=UppercaseSchema)
class Sample:
    my_text: str
    my_int: intSee marshmallow's documentation about extending Schema.
This library exports a NewType function to create types that generate customized marshmallow fields.
Keyword arguments to NewType are passed to the marshmallow field constructor.
import marshmallow.validate
from marshmallow_dataclass import NewType
IPv4 = NewType(
    "IPv4", str, validate=marshmallow.validate.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$")
)You can also pass a marshmallow field to NewType.
import marshmallow
from marshmallow_dataclass import NewType
Email = NewType("Email", str, field=marshmallow.fields.Email)Note: if you are using mypy, you will notice that mypy throws an error if a variable defined with
NewType is used in a type annotation. To resolve this, add the marshmallow_dataclass.mypy plugin
to your mypy configuration, e.g.:
[mypy]
plugins = marshmallow_dataclass.mypy
# ...Meta options are set the same way as a marshmallow Schema.
from marshmallow_dataclass import dataclass
@dataclass
class Point:
    x: float
    y: float
    class Meta:
        ordered = TrueThe project documentation is hosted on GitHub Pages: https://lovasoa.github.io/marshmallow_dataclass/
This library depends on python's standard typing library, which is provisional.
python3 -m venv venv
. venv/bin/activate
pip install '.[dev]'
# Make your changes
git commit # Pre-commit hooks should be run, checking your codeEvery commit is checked with pre-commit hooks for :