scandi-fine-web-cleaner

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the data-is-better-together/fineweb-c dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1816
  • Precision: 0.9524
  • Recall: 0.7018
  • F1: 0.8081
  • Auc Roc: 0.9648
  • Balanced Accuracy: 0.8480
  • Average Precision: 0.8906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Auc Roc Balanced Accuracy Average Precision
0.3165 1.0 100 0.2333 0.95 0.6667 0.7835 0.8099 0.8304 0.7721
0.1929 2.0 200 0.1359 0.9130 0.7368 0.8155 0.9778 0.8626 0.9105
0.1775 3.0 300 0.2245 0.9268 0.6667 0.7755 0.9481 0.8290 0.8721
0.1553 4.0 400 0.1816 0.9524 0.7018 0.8081 0.9648 0.8480 0.8906

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davanstrien/scandi-fine-web-cleaner

Finetuned
(2728)
this model

Dataset used to train davanstrien/scandi-fine-web-cleaner