Skip to content

delldu/MaskRCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

0b828af · Sep 26, 2019

History

13 Commits
Nov 7, 2018
Nov 7, 2018
Jan 20, 2019
Oct 1, 2018
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Oct 1, 2018
Oct 1, 2018
Sep 26, 2019
Jan 20, 2019
Jan 20, 2019
Jan 21, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019
Jan 20, 2019

Repository files navigation

MaskRCNN

Mask R-CNN is for "instance segmentation". Please reference https://arxiv.org/abs/1703.06870.

Example 1

Example2

Demo

python predict.py images/car58a54312d.jpg

Training

1. Put Coco files under data directory.

data/
├── annotations
├── test2014
├── train2014
└── val2014

2. ./train.sh

Evaluation

./eval.sh

DONE (t=2.57s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.317  
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.525  
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.336  
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.139  
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.366  
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.492  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.261  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.369  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.379  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.169  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.425  
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.562  
Prediction time: 349.81333112716675. Average 0.6996266622543335/image
Total time:  401.12283730506897

Requirements

  • Python 3.6.2

  • Pytorch 1.0.0

  • matplotlib, scipy, scikit-image

pip install scipy==1.2.1

Installation

  1. Clone this repository.

     git clone https://github.com/delldu/MaskRCNN.git
    
  2. Download pre-trained model.

   Download mask_rcnn_coco.pth from https://pan.baidu.com/s/1HVUdfrFKPMGlMcUP7mXZGw

and put it under models .

  1. Install c++ extension packages

    cd c++ext  
    make  
    cd ../
    
    cd cocoapi/PythonAPI  
    make  
    cd ../..
    

Thanks

  1. Mask R-CNN https://arxiv.org/abs/1703.06870

  2. https://github.com/multimodallearning/pytorch-mask-rcnn

Chinese Document

中文文档