dfurman/Llama-3-8B-Orpo-v0.1

This is an ORPO fine-tune of meta-llama/Meta-Llama-3-8B on 4k samples of mlabonne/orpo-dpo-mix-40k.

It's a successful fine-tune that follows the ChatML template!

πŸ”Ž Application

This model uses a context window of 8k. It was trained with the ChatML template.

πŸ† Evaluation

Open LLM Leaderboard

Model ID Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 66.87 60.75 78.55 67.07 51.65 74.51 68.69
dfurman/Llama-3-8B-Orpo-v0.1 πŸ“„ 64.67 60.67 82.56 66.59 50.47 79.01 48.75
meta-llama/Meta-Llama-3-8B πŸ“„ 62.35 59.22 82.02 66.49 43.95 77.11 45.34

πŸ“ˆ Training curves

You can find the experiment on W&B at this address.

πŸ’» Usage

Setup
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

if torch.cuda.get_device_capability()[0] >= 8:
    !pip install -qqq flash-attn
    attn_implementation = "flash_attention_2"
    torch_dtype = torch.bfloat16
else:
    attn_implementation = "eager"
    torch_dtype = torch.float16

model = "dfurman/Llama-3-8B-Orpo-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={
        "torch_dtype": torch_dtype,
        "device_map": "auto",
        "attn_implementation": attn_implementation,
    }
)

Run

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me a recipe for a spicy margarita."},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print("***Prompt:\n", prompt)

outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:\n", outputs[0]["generated_text"][len(prompt):])
Output
"""***Prompt:
 <|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me a recipe for a spicy margarita.<|im_end|>
<|im_start|>assistant

***Generation:
 Sure! Here's a recipe for a spicy margarita:

Ingredients:

- 2 oz silver tequila
- 1 oz triple sec
- 1 oz fresh lime juice
- 1/2 oz simple syrup
- 1/2 oz fresh lemon juice
- 1/2 tsp jalapeΓ±o, sliced (adjust to taste)
- Ice cubes
- Salt for rimming the glass

Instructions:

1. Prepare the glass by running a lime wedge around the rim of the glass. Dip the rim into a shallow plate of salt to coat.
2. Combine the tequila, triple sec, lime juice, simple syrup, lemon juice, and jalapeΓ±o slices in a cocktail shaker.
3. Add ice cubes to the cocktail shaker and shake vigorously for 30 seconds to 1 minute.
4. Strain the cocktail into the prepared glass.
5. Garnish with a lime wedge and jalapeΓ±o slice.

Enjoy! This spicy margarita has a nice balance of sweetness and acidity, with a subtle heat from the jalapeΓ±o that builds gradually as you sip."""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-8B-Orpo-v0.1)
Metric Value
Avg. 11.01
IFEval (0-Shot) 30.00
BBH (3-Shot) 13.77
MATH Lvl 5 (4-Shot) 3.78
GPQA (0-shot) 1.57
MuSR (0-shot) 2.73
MMLU-PRO (5-shot) 14.23
Downloads last month
4,825
Safetensors
Model size
8.03B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dfurman/Llama-3-8B-Orpo-v0.1

Finetuned
(384)
this model
Quantizations
1 model

Dataset used to train dfurman/Llama-3-8B-Orpo-v0.1

Space using dfurman/Llama-3-8B-Orpo-v0.1 1

Collection including dfurman/Llama-3-8B-Orpo-v0.1

Evaluation results