Skip to content

dimonets/mit-6.036

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Supporting Code for Machine Learning Course

This is a project with supporting code for Machine Learning course based on MIT 6.036 course and Microsoft ML for beginners course.

Courses

Video Lessons

  1. Introduction to Machine Learning Teach by Doing: https://lnkd.in/gqN2PMX5
  2. What is Machine Learning? History of Machine Learning: https://lnkd.in/gvpNSAKh
  3. Types of ML Models: https://lnkd.in/gSy2mChM
  4. 6 steps of any ML project: https://lnkd.in/ggCGchPQ
  5. Install Python and VSCode and run your first code: https://lnkd.in/gyic7J7b
  6. Linear Classifiers Part 1: https://lnkd.in/gYdfD97D
  7. Linear Classifiers Part 2: https://lnkd.in/gac_z-G8
  8. Jupyter Notebook, Numpy and Scikit-Learn: https://lnkd.in/gWRaC_tB
  9. Running the Random Linear Classifier Algorithm in Python: https://lnkd.in/g5HacbFC
  10. The oldest ML model - Perceptron: https://lnkd.in/gpce6uFt
  11. Coding the Perceptron: https://lnkd.in/gmz-XjNK
  12. Perceptron Convergence Theorem: https://lnkd.in/gmz-XjNK
  13. Magic of features in Machine Learning: https://lnkd.in/gCeDRb3g
  14. One hot encoding: https://lnkd.in/g3WfRQGQ
  15. Logistic Regression Part 1: https://lnkd.in/gTgZAAZn
  16. Cross Entropy Loss: https://lnkd.in/g3Ywg_2p
  17. How gradient descent works: https://lnkd.in/gKBAsazF
  18. Logistic Regression from scratch in Python: https://lnkd.in/g8iZh27P
  19. Introduction to Regularization: https://lnkd.in/gjM9pVw2
  20. Implementing Regularization in Python: https://lnkd.in/gRnSK4v4
  21. Linear Regression Introduction: https://lnkd.in/gPYtSPJ9
  22. Ordinary Least Squares step by step implementation: https://lnkd.in/gnWQdgNy
  23. Ridge regression fundamentals and intuition: https://lnkd.in/gE5M-CSM
  24. Regression recap for interviews: https://lnkd.in/gNBWzzWv
  25. Neural network architecture in 30 minutes: https://lnkd.in/g7qSrkxG
  26. Backpropagation intuition: https://lnkd.in/gAmBARHm
  27. Neural network activation functions: https://lnkd.in/gqrC3zDP
  28. Momentum in gradient descent: https://lnkd.in/g3M4qhbP
  29. Hands on neural network training in Python: https://lnkd.in/gz-fTBxs

Releases

No releases published

Packages

No packages published

Languages