This project provides tools to create an SQLite database from compressed log files and interact with it using the Model Context Protocol (MCP) SQLite server.
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txtPlace log files in the folder as .gz files, then run:
python3 create_log_db.py To configure the MCP SQLite server in Cursor-
- Cursor Settings
- MCP
- Add New MCP Server
- Name
SQLlite - Set the type to
command - Put this in the command box
npx -y @smithery/cli@latest run mcp-server-sqlite-npx --config "{\"databasePath\":\"/path/to/thedatbase/logs.db\"}"create_log_db.py: Script to extract and parse log files into an SQLite databasequery_logs.py: Script to directly query the SQLite databaselogs.db: SQLite database containing parsed log data
The database contains the following tables:
id: Unique identifier for each log entrytimestamp: Timestamp of the log entrythread: Thread that generated the loglevel: Log level (INFO, WARN, ERROR, DEBUG)module: Module that generated the logmessage: Log message contentsource_file: Source log fileraw_log: Raw log entry
id: Unique identifier for each stack tracelog_id: Reference to the log entry this stack trace belongs tostack_trace: Full stack trace text
id: Unique identifier for each parsing errorline: The line that couldn't be parsedsource_file: Source log fileerror_message: Error message explaining why parsing failedtimestamp: When the parsing error occurred
You can query the database directly using the query_logs.py script: