distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9570
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1586 1.0 112 2.0855 0.45
1.4771 2.0 225 1.3396 0.72
1.181 3.0 337 0.9735 0.76
0.8133 4.0 450 0.8692 0.76
0.5397 5.0 562 0.7118 0.81
0.3424 6.0 675 0.6237 0.81
0.2717 7.0 787 0.6551 0.83
0.2653 8.0 900 0.6707 0.83
0.0503 9.0 1012 0.7025 0.84
0.0168 10.0 1125 0.7643 0.87
0.1125 11.0 1237 0.8550 0.86
0.155 12.0 1350 0.9796 0.82
0.005 13.0 1462 0.9539 0.86
0.0038 14.0 1575 0.9206 0.86
0.0035 15.0 1687 0.8725 0.88
0.051 16.0 1800 0.9980 0.86
0.003 17.0 1912 0.9579 0.86
0.0025 18.0 2025 0.9735 0.86
0.0023 19.0 2137 0.9589 0.86
0.0022 19.91 2240 0.9570 0.86

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.0
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
8
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ditwoo/distilhubert-finetuned-gtzan