-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 00c8660
Showing
74 changed files
with
4,949 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
*.npy | ||
__pycache__/ | ||
checkpoints/ | ||
data/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
MIT License | ||
|
||
Portions of this software are copyright of their respective authors and released | ||
under the MIT license: | ||
- Mammoth, Copyright 2020 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara | ||
- SimSiam, Copyright 2020 PatrickHua | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Representational Continuity </br> for Unsupervised Continual Learning | ||
This is the *Pytorch Implementation* for the paper Representational Continuity for Unsupervised Continual Learning | ||
|
||
**Authors**: [Divyam Madaan](https://dmadaan.com/), [Jaehong Yoon](https://jaehong31.github.io), [Yuanchun Li](http://yuanchun-li.github.io), [Yunxin Liu](https://yunxinliu.github.io), [Sung Ju Hwang](http://sungjuhwang.com/) | ||
|
||
## Abstract | ||
<img align="middle" width="700" src="https://github.com/divyam3897/UCL/blob/main/concept.png"> | ||
|
||
Continual learning (CL) aims to learn a sequence of tasks without forgetting the previously acquired knowledge. However, recent advances in continual learning are restricted to supervised continual learning (SCL) scenarios. Consequently, they are not scalable to real-world applications where the data distribution is often biased and unannotated. In this work, we focus on *unsupervised continual learning (UCL)*, where we learn the feature representations on an unlabelled sequence of tasks and show that the reliance on annotated data is not necessary for continual learning. We conduct a systematic study analyzing the learned feature representations and show that unsupervised visual representations are surprisingly more robust to catastrophic forgetting, consistently achieve better performance, and generalize better to out-of-distribution tasks than SCL. Furthermore, we find that UCL achieves a smoother loss landscape through qualitative analysis of the learned representations and learns meaningful feature representations. | ||
Additionally, we propose Lifelong Unsupervised Mixup (Lump), a simple yet effective technique that leverages the interpolation between the current task and previous tasks' instances to alleviate catastrophic forgetting for unsupervised representations. | ||
|
||
__Contribution of this work__ | ||
- We attempt to bridge the gap between continual learning and representation learning and tackle the two important problems of continual learning with unlabelled data and representation learning on a sequence of tasks. | ||
- Systematic quantitative analysis show that UCL achieves better performance over SCL with significantly lower catastrophic forgetting on Sequential CIFAR-10, CIFAR-100 and Tiny-ImageNet. Additionally, we evaluate on out of distribution tasks and few-shot continually learning demonstrating the expressive power of unsupervised representations. | ||
- We provide visualization of the representations and loss landscapes that UCL learns discriminative, human perceptual patterns and achieves a flatter and smoother loss landscape. Furthermore, we propose Lifelong Unsupervised Mixup (Lump) for UCL, which effectively alleviates catastrophic forgetting and provides better qualitative interpretations. | ||
|
||
|
||
## Prerequisites | ||
``` | ||
$ pip install -r requirements.txt | ||
``` | ||
|
||
## Run | ||
* __Split CIFAR-10__ experiment with SimSiam | ||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simsiam_c10.yaml --ckpt_dir ./checkpoints/cifar10_results/ --hide_progress | ||
``` | ||
|
||
* __Split CIFAR-100__ experiment with SimSiam | ||
|
||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simsiam_c100.yaml --ckpt_dir ./checkpoints/cifar100_results/ --hide_progress | ||
``` | ||
|
||
* __Split Tiny-ImageNet__ experiment with SimSiam | ||
|
||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simsiam_tinyimagenet.yaml --ckpt_dir ./checkpoints/tinyimagenet_results/ --hide_progress | ||
``` | ||
|
||
* __Split CIFAR-10__ experiment with BarlowTwins | ||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/barlow_c10.yaml --ckpt_dir ./checkpoints/cifar10_results/ --hide_progress | ||
``` | ||
|
||
* __Split CIFAR-100__ experiment with BarlowTwins | ||
|
||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/barlowm_c100.yaml --ckpt_dir ./checkpoints/cifar100_results/ --hide_progress | ||
``` | ||
|
||
* __Split Tiny-ImageNet__ experiment with BarlowTwins | ||
|
||
``` | ||
$ python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/barlowm_tinyimagenet.yaml --ckpt_dir ./checkpoints/tinyimagenet_results/ --hide_progress | ||
``` | ||
|
||
## Contributing | ||
We'd love to accept your contributions to this project. Please feel free to open an issue, or submit a pull request as necessary. If you have implementations of this repository in other ML frameworks, please reach out so we may highlight them here. | ||
|
||
## Acknowledgment | ||
The code is build upon [aimagelab/mammoth](https://github.com/aimagelab/mammoth) and [PatrickHua/SimSiam](https://github.com/PatrickHua/SimSiam) | ||
|
||
## Citation | ||
If you found the provided code useful, please cite our work. | ||
|
||
```bibtex | ||
@inproceedings{ | ||
madaan2022rethinking, | ||
title={Representational Continuity for Unsupervised Continual Learning}, | ||
author={Divyam Madaan and Jaehong Yoon and Yuanchun Li and Yunxin Liu and Sung Ju Hwang}, | ||
booktitle={International Conference on Learning Representations}, | ||
year={2022}, | ||
url={https://openreview.net/forum?id=9Hrka5PA7LW} | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import argparse | ||
import os | ||
import torch | ||
|
||
import numpy as np | ||
import torch | ||
import random | ||
|
||
import re | ||
import yaml | ||
|
||
import shutil | ||
import warnings | ||
|
||
from datetime import datetime | ||
|
||
|
||
class Namespace(object): | ||
def __init__(self, somedict): | ||
for key, value in somedict.items(): | ||
assert isinstance(key, str) and re.match("[A-Za-z_-]", key) | ||
if isinstance(value, dict): | ||
self.__dict__[key] = Namespace(value) | ||
else: | ||
self.__dict__[key] = value | ||
|
||
def __getattr__(self, attribute): | ||
|
||
raise AttributeError(f"Can not find {attribute} in namespace. Please write {attribute} in your config file(xxx.yaml)!") | ||
|
||
|
||
def set_deterministic(seed): | ||
# seed by default is None | ||
if seed is not None: | ||
print(f"Deterministic with seed = {seed}") | ||
random.seed(seed) | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed(seed) | ||
torch.backends.cudnn.deterministic = True | ||
torch.backends.cudnn.benchmark = False | ||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-c', '--config-file', required=True, type=str, help="xxx.yaml") | ||
parser.add_argument('--debug', action='store_true') | ||
parser.add_argument('--debug_subset_size', type=int, default=8) | ||
parser.add_argument('--download', action='store_true', help="if can't find dataset, download from web") | ||
parser.add_argument('--data_dir', type=str, default=os.getenv('DATA')) | ||
parser.add_argument('--log_dir', type=str, default=os.getenv('LOG')) | ||
parser.add_argument('--ckpt_dir', type=str, default=os.getenv('CHECKPOINT')) | ||
parser.add_argument('--ckpt_dir_1', type=str, default=os.getenv('CHECKPOINT')) | ||
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') | ||
parser.add_argument('--eval_from', type=str, default=None) | ||
parser.add_argument('--hide_progress', action='store_true') | ||
parser.add_argument('--cl_default', action='store_true') | ||
parser.add_argument('--validation', action='store_true', | ||
help='Test on the validation set') | ||
parser.add_argument('--ood_eval', action='store_true', | ||
help='Test on the OOD set') | ||
args = parser.parse_args() | ||
|
||
|
||
with open(args.config_file, 'r') as f: | ||
for key, value in Namespace(yaml.load(f, Loader=yaml.FullLoader)).__dict__.items(): | ||
vars(args)[key] = value | ||
|
||
if args.debug: | ||
if args.train: | ||
args.train.batch_size = 2 | ||
args.train.num_epochs = 1 | ||
args.train.stop_at_epoch = 1 | ||
if args.eval: | ||
args.eval.batch_size = 2 | ||
args.eval.num_epochs = 1 # train only one epoch | ||
args.dataset.num_workers = 0 | ||
|
||
|
||
assert not None in [args.log_dir, args.data_dir, args.ckpt_dir, args.name] | ||
|
||
args.log_dir = os.path.join(args.log_dir, 'in-progress_'+datetime.now().strftime('%m%d%H%M%S_')+args.name) | ||
|
||
os.makedirs(args.log_dir, exist_ok=False) | ||
print(f'creating file {args.log_dir}') | ||
os.makedirs(args.ckpt_dir, exist_ok=True) | ||
|
||
shutil.copy2(args.config_file, args.log_dir) | ||
set_deterministic(args.seed) | ||
|
||
|
||
vars(args)['aug_kwargs'] = { | ||
'name':args.model.name, | ||
'image_size': args.dataset.image_size | ||
} | ||
vars(args)['dataset_kwargs'] = { | ||
# 'name':args.model.name, | ||
# 'image_size': args.dataset.image_size, | ||
'dataset':args.dataset.name, | ||
'data_dir': args.data_dir, | ||
'download':args.download, | ||
'debug_subset_size': args.debug_subset_size if args.debug else None, | ||
# 'drop_last': True, | ||
# 'pin_memory': True, | ||
# 'num_workers': args.dataset.num_workers, | ||
} | ||
vars(args)['dataloader_kwargs'] = { | ||
'drop_last': True, | ||
'pin_memory': True, | ||
'num_workers': args.dataset.num_workers, | ||
} | ||
|
||
return args |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
from .simsiam_aug import SimSiamTransform | ||
from .eval_aug import Transform_single | ||
|
||
|
||
def get_aug(name='simsiam', image_size=224, train=True, train_classifier=None): | ||
if train==True: | ||
augmentation = SimSiamTransform(image_size) | ||
elif train==False: | ||
if train_classifier is None: | ||
raise Exception | ||
augmentation = Transform_single(image_size, train=train_classifier) | ||
else: | ||
raise Exception | ||
|
||
return augmentation | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
from torchvision import transforms | ||
from PIL import Image | ||
|
||
# imagenet_norm = [[0.485, 0.456, 0.406],[0.229, 0.224, 0.225]] | ||
imagenet_norm = [[0.4914, 0.4822, 0.4465],[0.2470, 0.2435, 0.2615]] | ||
|
||
class Transform_single(): | ||
def __init__(self, image_size, train, normalize=imagenet_norm): | ||
if train == True: | ||
self.transform = transforms.Compose([ | ||
transforms.RandomResizedCrop(image_size, scale=(0.08, 1.0), ratio=(3.0/4.0,4.0/3.0), interpolation=Image.BICUBIC), | ||
# transforms.RandomCrop(image_size, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms.Normalize(*normalize) | ||
]) | ||
else: | ||
self.transform = transforms.Compose([ | ||
# transforms.Resize(int(image_size*(8/7)), interpolation=Image.BICUBIC), # 224 -> 256 | ||
# transforms.CenterCrop(image_size), | ||
transforms.ToTensor(), | ||
transforms.Normalize(*normalize) | ||
]) | ||
|
||
def __call__(self, x): | ||
return self.transform(x) |
Oops, something went wrong.