-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 2d36249
Showing
6 changed files
with
433 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
share/python-wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
.idea/ | ||
/.idea | ||
*.iml | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.nox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# IPython | ||
profile_default/ | ||
ipython_config.py | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
.dmypy.json | ||
dmypy.json | ||
|
||
# Pyre type checker | ||
.pyre/ | ||
|
||
# JPG PNG | ||
*.jpg | ||
*.png |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
#!/usr/bin/python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
@Time : 2019-05-23 16:32 | ||
@Author : Wang Xin | ||
@Email : [email protected] | ||
@File : SideWindowFilter.py | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class SideWindowFilter(nn.Module): | ||
|
||
def __init__(self, radius, iteration): | ||
super(SideWindowFilter, self).__init__() | ||
self.radius = radius | ||
self.iteration = iteration | ||
self.kernel_size = 2 * self.radius + 1 | ||
self.filter = nn.Parameter(torch.Tensor(1, 1, self.kernel_size, self.kernel_size)) | ||
|
||
def forward(self, im): | ||
b, c, h, w = im.size() | ||
|
||
d = torch.zeros(b, 8, h, w, dtype=torch.float) | ||
res = im.clone() | ||
|
||
L, R, U, D = [self.filter.clone() for _ in range(4)] | ||
|
||
L[:, :, :, self.radius + 1:] = 0 | ||
R[:, :, :, 0: self.radius] = 0 | ||
U[:, :, self.radius + 1:, :] = 0 | ||
D[:, :, 0: self.radius, :] = 0 | ||
|
||
NW, NE, SW, SE = U.clone(), U.clone(), D.clone(), D.clone() | ||
|
||
L, R, U, D = L / ((self.radius + 1) * self.kernel_size), R / ((self.radius + 1) * self.kernel_size), \ | ||
U / ((self.radius + 1) * self.kernel_size), D / ((self.radius + 1) * self.kernel_size) | ||
|
||
NW[:, :, :, self.radius + 1:] = 0 | ||
NE[:, :, :, 0: self.radius] = 0 | ||
SW[:, :, :, self.radius + 1:] = 0 | ||
SE[:, :, :, 0: self.radius] = 0 | ||
|
||
NW, NE, SW, SE = NW / ((self.radius + 1) ** 2), NE / ((self.radius + 1) ** 2), \ | ||
SW / ((self.radius + 1) ** 2), SE / ((self.radius + 1) ** 2) | ||
|
||
print('L:', L) | ||
print('R:', R) | ||
print('U:', U) | ||
print('D:', D) | ||
print('NW:', NW) | ||
print('NE:', NE) | ||
print('SW:', SW) | ||
print('SE:', SE) | ||
|
||
for ch in range(c): | ||
im_ch = im[:, ch, ::].clone().view(b, 1, h, w) | ||
# print('im size in each channel:', im_ch.size()) | ||
|
||
for i in range(self.iteration): | ||
# print('###', (F.conv2d(input=im_ch, weight=L, padding=(self.radius, self.radius)) / sum_L - | ||
# im_ch).size(), d[:, 0,::].size()) | ||
d[:, 0, ::] = F.conv2d(input=im_ch, weight=L, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 1, ::] = F.conv2d(input=im_ch, weight=R, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 2, ::] = F.conv2d(input=im_ch, weight=U, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 3, ::] = F.conv2d(input=im_ch, weight=D, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 4, ::] = F.conv2d(input=im_ch, weight=NW, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 5, ::] = F.conv2d(input=im_ch, weight=NE, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 6, ::] = F.conv2d(input=im_ch, weight=SW, padding=(self.radius, self.radius)) - im_ch | ||
d[:, 7, ::] = F.conv2d(input=im_ch, weight=SE, padding=(self.radius, self.radius)) - im_ch | ||
|
||
d_abs = torch.abs(d) | ||
print('im_ch', im_ch) | ||
print('dm = ', d_abs.shape, d_abs) | ||
mask_min = torch.argmin(d_abs, dim=1, keepdim=True) | ||
print('mask min = ', mask_min.shape, mask_min) | ||
dm = torch.gather(input=d, dim=1, index=mask_min) | ||
im_ch = dm + im_ch | ||
|
||
res[:, ch, ::] = im_ch | ||
return res | ||
|
||
|
||
class Net(nn.Module): | ||
|
||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.filter = SideWindowFilter(radius=1, iteration=1) | ||
|
||
def forward(self, x): | ||
return self.filter(x) | ||
|
||
|
||
if __name__ == '__main__': | ||
s = SideWindowFilter(radius=1, iteration=1) | ||
from PIL import Image | ||
|
||
import cv2 | ||
img = cv2.imread('../lena.png', flags=0) | ||
img = torch.tensor(img, dtype=torch.float) | ||
print('img ori = ', img) | ||
|
||
print(len(img.size())) | ||
if len(img.size()) == 2: | ||
h, w = img.size() | ||
img = img.view(-1, 1, h, w) | ||
else: | ||
c, h, w = img.size() | ||
img = img.view(-1, c, h, w) | ||
print('img = ', img.shape) | ||
|
||
model = Net() | ||
res = model(img) | ||
res.mean().backward() | ||
|
||
print('res = ', res.shape, res) | ||
import numpy as np | ||
if res.size(1) == 3: | ||
img_res = np.transpose(np.squeeze(res.data.numpy()), (1, 2, 0)) | ||
else: | ||
img_res = np.squeeze(res.data.numpy()) | ||
|
||
# print(img_res.shape, img_res) | ||
img_res = img_res | ||
img_res = img_res.astype(np.uint8) | ||
print('img res:', img_res) | ||
img_res = Image.fromarray(img_res) # numpy to image | ||
img_res.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
#!/usr/bin/python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
@Time : 2019-05-23 16:32 | ||
@Author : Wang Xin | ||
@Email : [email protected] | ||
@File : __init__.py.py | ||
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# SideWindowFilter |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
function result=SideWindowBoxFilter(im, radius, iteration) | ||
%papers: 1) Sub-window Box Filter, Y.Gong, B.Liu, X.Hou, G.Qiu, VCIP2018, Dec.09, Taiwan | ||
% 2) Side Window Filtering, H.Yin, Y.Gong, G.Qiu. CVPR2019 | ||
%implemented by Yuanhao Gong | ||
|
||
r = radius; | ||
k = ones(2*r+1,1)/(2*r+1); %separable kernel | ||
k_L=k; k_L(r+2:end)=0; k_L = k_L/sum(k_L); %half kernel | ||
k_R=flipud(k_L); | ||
m = size(im,1)+2*r; n = size(im,2)+2*r; total = m*n; | ||
[row, col]=ndgrid(1:m,1:n); | ||
offset = row + m*(col-1) - total; | ||
im = single(im); | ||
result = im; | ||
d = zeros(m,n,8,'single'); | ||
|
||
for ch=1:size(im,3) | ||
U = padarray(im(:,:,ch),[r,r],'replicate'); | ||
for i = 1:iteration | ||
%all projection distances | ||
d(:,:,1) = conv2(k_L, k_L, U,'same') - U; | ||
d(:,:,2) = conv2(k_L, k_R, U,'same') - U; | ||
d(:,:,3) = conv2(k_R, k_L, U,'same') - U; | ||
d(:,:,4) = conv2(k_R, k_R, U,'same') - U; | ||
d(:,:,5) = conv2(k_L, k, U,'same') - U; | ||
d(:,:,6) = conv2(k_R, k, U,'same') - U; | ||
d(:,:,7) = conv2(k, k_L, U,'same') - U; | ||
d(:,:,8) = conv2(k, k_R, U,'same') - U; | ||
|
||
%find the minimal signed distance | ||
tmp = abs(d); | ||
[~,ind] = min(tmp,[],3); | ||
index = offset+total*ind; | ||
dm = d(index); %signed minimal distance | ||
%update | ||
U = U + dm; | ||
end | ||
result(:,:,ch) = U(r+1:end-r,r+1:end-r); | ||
end |
Oops, something went wrong.