Code for the paper "Carbon-Aware Quality Adaptation for Energy-Intensive Services".
The datasets and full instructions on how to reproduce all experiments can be provided upon request. We will update the repository with the datasets and instructions in the future.
python -m venv venv
. venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
Run experiments using python main.py
, where you can override individual parameterizations using hydra. For example:
> python main.py optimizer=qt_online region=CISO vp=1,24,168 qor_target=.5 requests_dataset=wiki_en,wiki_de result_dir=final_results
Would run 6 experiments and store the results in ./final_results
: three validity periods (vp
) on two datasets (requests_dataset
) with the qt_online
optimizer in the CISO
region and a minimum quality of responses (qor_target
) of 0.5.
Full configuration:
> python main.py --help
main is powered by Hydra.
== Configuration groups ==
Compose your configuration from those groups (group=option)
optimizer: greedy, qt, qt_online
user_groups: p0, p10, p100, p20, p30, p40, p5, p50, p60, p70, p80, p90, p95, p96, p97, p98, p99
== Config ==
Override anything in the config (foo.bar=value)
seed: 0
qor_target: 0.5
requests_dataset: wiki_en
region: CISO
vp: 24
model_qualities:
- bad
- good
machines:
- _target_: src.scenario.Machine
name: AWS_p4d.24xlarge
power_usage: 3.7818
pue: 1
performance:
llama8B: 41710
good: 18176
embedded_carbon: 135
result_dir: results
optimizer:
_target_: src.optimizer.Qt
callback:
_target_: src.util.Callback
gap: 0.001
time_limit: 3600
relax: false
silent: false
user_groups:
name: p0
groups:
- name: best-effort
weight: 1
slo_lower:
bad: 1
good: 0
slo_upper:
bad: 0
good: 1