Code for AISTATS'25 paper "On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond".
pip install -r requirements.txt
python fedaware.py -num_clients 100 \
-com_round 500 \
-sample_ratio 0.1 \
-batch_size 64 \
-epochs 3 \
-lr 0.01 \
-glr 1 \
-dseed 37 [data partition random seed] \
-seed 42 [running random seed] \
-partition dirichlet \
-dir 0.1 \
-dataset [cifar10/cifar100/agnews] \
-alpha 0.5 [hyperparameters]\
-preprocess 1 [dataset preprocesssing]
Note:
-
For Agnews task, please run
python agnews_dataset.pyto preprocess Agnews dataset. And, download pythia model from https://huggingface.co/EleutherAI/pythia-70m. -
Please see utils.py FedAWARE_Projector class for our implementation details.
-
Leave an issue if you have any questions.
Please cite our paper if you found the code useful.
@inproceedings{zeng2025power,
title={On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond},
author={Zeng, Dun and Xu, Zenglin and LIU, SHIYU and Pan, Yu and Wang, Qifan and Tang, Xiaoying},
booktitle={International Conference on Artificial Intelligence and Statistics},
pages={1081--1089},
year={2025},
organization={PMLR}
}