Skip to content

Image classification using CNN with various architectures and optimizers

Notifications You must be signed in to change notification settings

egiiputra/corn-stem-disease-classification

Repository files navigation

Corn stem disease classification

Test result

Dataset Architecture Optimizer Accuracy Precision Recall F1-Score
Original VGG16 SGD 33,00% 11,00% 33,00% 17,00%
RMSprop 95,00% 95,00% 95,00% 95,00%
Adam 97,00% 97,00% 97,00% 97,00%
VGG19 SGD 37,00% 45,00% 37,00% 23,00%
RMSprop 77,00% 79,00% 77,00% 76,00%
Adam 92,00% 92,00% 92,00% 92,00%
AlexNet SGD 57,00% 38,00% 57,00% 46,00%
RMSprop 82,00% 83,00% 82,00% 82,00%
Adam 63,00% 44,00% 63,00% 51,00%
ResNet101 SGD 47,00% 31,00% 47,00% 36,00%
RMSprop 43,00% 67,00% 43,00% 34,00%
Adam 97,00% 97,00% 97,00% 97,00%
CLAHE VGG16 SGD 37,00% 31,00% 37,00% 29,00%
RMSprop 70,00% 73,00% 70,00% 70,00%
Adam 87,00% 89,00% 87,00% 86,00%
VGG19 SGD 33,00% 11,00% 33,00% 17,00%
RMSprop 80,00% 80,00% 80,00% 80,00%
Adam 95,00% 95,00% 95,00% 95,00%
AlexNet SGD 42,00% 40,00% 42,00% 31,00%
RMSprop 90,00% 91,00% 90,00% 90,00%
Adam 60,00% 70,00% 60,00% 57,00%
ResNet101 SGD 33,00% 11,00% 33,00% 17,00%
RMSprop 33,00% 11,00% 33,00% 17,00%
Adam 33,00% 11,00% 33,00% 17,00%

About

Image classification using CNN with various architectures and optimizers

Topics

Resources

Stars

Watchers

Forks