Skip to content

Add RerankRequestChunker #130485

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,8 @@ protected void doInference(
InferenceService service,
ActionListener<InferenceServiceResults> listener
) {
// var rerankChunker = new RerankRequestChunker(request.getInput());

service.infer(
model,
request.getQuery(),
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/

package org.elasticsearch.xpack.inference.chunking;

import org.elasticsearch.action.ActionListener;
import org.elasticsearch.inference.ChunkingSettings;
import org.elasticsearch.xpack.core.inference.action.InferenceAction;
import org.elasticsearch.xpack.core.inference.results.RankedDocsResults;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class RerankRequestChunker {

private final ChunkingSettings chunkingSettings;
private final List<String> inputs;
private final Map<Integer, RerankChunks> rerankChunks;

public RerankRequestChunker(List<String> inputs) {
// TODO: Make chunking settings dependent on the model being used.
// There may be a way to do this dynamically knowing the max token size for the model/service and query size
// instead of hardcoding it ona model/service basis.
this.chunkingSettings = new WordBoundaryChunkingSettings(100, 10);
this.inputs = inputs;
this.rerankChunks = chunk(inputs, chunkingSettings);
}

private Map<Integer, RerankChunks> chunk(List<String> inputs, ChunkingSettings chunkingSettings) {
var chunker = ChunkerBuilder.fromChunkingStrategy(chunkingSettings.getChunkingStrategy());
var chunks = new HashMap<Integer, RerankChunks>();
var chunkIndex = 0;
for (int i = 0; i < inputs.size(); i++) {
var chunksForInput = chunker.chunk(inputs.get(i), chunkingSettings);
for (var chunk : chunksForInput) {
chunks.put(chunkIndex, new RerankChunks(i, inputs.get(i).substring(chunk.start(), chunk.end())));
chunkIndex++;
}
}
return chunks;
}

public List<String> getChunkedInputs() {
List<String> chunkedInputs = new ArrayList<>();
for (RerankChunks chunk : rerankChunks.values()) {
chunkedInputs.add(chunk.chunkString());
}
// TODO: Score the inputs here and only return the top N chunks for each document
return chunkedInputs;
}

public ActionListener<InferenceAction.Response> parseChunkedRerankResultsListener(ActionListener<InferenceAction.Response> listener) {
return ActionListener.wrap(results -> {
if (results.getResults() instanceof RankedDocsResults rankedDocsResults) {
listener.onResponse(new InferenceAction.Response(parseRankedDocResultsForChunks(rankedDocsResults)));
// TODO: Figure out if the above correctly creates the response or if it loses any info

} else {
listener.onFailure(new IllegalArgumentException("Expected RankedDocsResults but got: " + results.getClass()));
}

}, listener::onFailure);
}

private RankedDocsResults parseRankedDocResultsForChunks(RankedDocsResults rankedDocsResults) {
Map<Integer, RankedDocsResults.RankedDoc> bestRankedDocResultPerDoc = new HashMap<>();
for (var rankedDoc : rankedDocsResults.getRankedDocs()) {
int chunkIndex = rankedDoc.index();
int docIndex = rerankChunks.get(chunkIndex).docIndex();
if (bestRankedDocResultPerDoc.containsKey(docIndex)) {
RankedDocsResults.RankedDoc existingDoc = bestRankedDocResultPerDoc.get(docIndex);
if (rankedDoc.relevanceScore() > existingDoc.relevanceScore()) {
bestRankedDocResultPerDoc.put(
docIndex,
new RankedDocsResults.RankedDoc(docIndex, rankedDoc.relevanceScore(), inputs.get(docIndex))
);
}
} else {
bestRankedDocResultPerDoc.put(
docIndex,
new RankedDocsResults.RankedDoc(docIndex, rankedDoc.relevanceScore(), inputs.get(docIndex))
);
}
}
var bestRankedDocResultPerDocList = new ArrayList<>(bestRankedDocResultPerDoc.values());
bestRankedDocResultPerDocList.sort(
(RankedDocsResults.RankedDoc d1, RankedDocsResults.RankedDoc d2) -> Float.compare(d2.relevanceScore(), d1.relevanceScore())
);
return new RankedDocsResults(bestRankedDocResultPerDocList);
}

public record RerankChunks(int docIndex, String chunkString) {};
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import org.elasticsearch.xpack.core.inference.action.GetInferenceModelAction;
import org.elasticsearch.xpack.core.inference.action.InferenceAction;
import org.elasticsearch.xpack.core.inference.results.RankedDocsResults;
import org.elasticsearch.xpack.inference.chunking.RerankRequestChunker;
import org.elasticsearch.xpack.inference.services.cohere.rerank.CohereRerankTaskSettings;
import org.elasticsearch.xpack.inference.services.googlevertexai.rerank.GoogleVertexAiRerankTaskSettings;
import org.elasticsearch.xpack.inference.services.huggingface.rerank.HuggingFaceRerankTaskSettings;
Expand Down Expand Up @@ -119,9 +120,16 @@ protected void computeScores(RankFeatureDoc[] featureDocs, ActionListener<float[
inferenceListener.onResponse(new InferenceAction.Response(new RankedDocsResults(List.of())));
} else {
List<String> featureData = Arrays.stream(featureDocs).map(x -> x.featureData).toList();
InferenceAction.Request inferenceRequest = generateRequest(featureData);
RerankRequestChunker chunker = new RerankRequestChunker(featureData);
InferenceAction.Request inferenceRequest = generateRequest(chunker.getChunkedInputs());
try {
executeAsyncWithOrigin(client, INFERENCE_ORIGIN, InferenceAction.INSTANCE, inferenceRequest, inferenceListener);
executeAsyncWithOrigin(
client,
INFERENCE_ORIGIN,
InferenceAction.INSTANCE,
inferenceRequest,
chunker.parseChunkedRerankResultsListener(inferenceListener)
);
} finally {
inferenceRequest.decRef();
}
Expand Down Expand Up @@ -156,6 +164,7 @@ protected RankFeatureDoc[] preprocess(RankFeatureDoc[] originalDocs, boolean rer
}

protected InferenceAction.Request generateRequest(List<String> docFeatures) {
// TODO: Try running the RerankRequestChunker here.
return new InferenceAction.Request(
TaskType.RERANK,
inferenceId,
Expand Down