|
| 1 | +//! Hardware Semaphore (HSEM) |
| 2 | +const HSEM: crate::pac::hsem::Hsem = crate::pac::HSEM; |
| 3 | + |
| 4 | +/// TODO |
| 5 | +pub struct HsemLockFailed; |
| 6 | + |
| 7 | +/// CPU Core. |
| 8 | +/// |
| 9 | +/// The enum values are identical to the bus master IDs defined for each chip family. |
| 10 | +/// |
| 11 | +/// On some chips, the Reference Manual calls this value MASTERID instead of COREID. |
| 12 | +#[repr(u8)] |
| 13 | +pub enum CoreId { |
| 14 | + #[cfg(any(stm32h7a3, stm32h7b3, stm32h7b0))] |
| 15 | + /// Cortex-M7, core 1. MASTERID = 1 |
| 16 | + Core0 = 1, |
| 17 | + |
| 18 | + #[cfg(any( |
| 19 | + stm32h723, stm32h725, stm32h730, stm32h733, stm32h735, stm32h742, stm32h743, stm32h745, stm32h747, stm32h750, |
| 20 | + stm32h753, stm32h755, stm32h757, |
| 21 | + ))] |
| 22 | + /// Cortex-M7, core 1. MASTERID = 3 |
| 23 | + Core0 = 3, |
| 24 | + |
| 25 | + #[cfg(any(stm32wb, stm32wl))] |
| 26 | + /// Cortex-M4, core 1 |
| 27 | + Core0 = 4, |
| 28 | + |
| 29 | + #[cfg(not(any(stm32wb, stm32wl)))] |
| 30 | + /// Cortex-M4, core 2 |
| 31 | + Core1 = 1, |
| 32 | + |
| 33 | + #[cfg(any(stm32wb, stm32wl))] |
| 34 | + /// Cortex M0+, core 2 |
| 35 | + Core1 = 8, |
| 36 | +} |
| 37 | + |
| 38 | +impl CoreId { |
| 39 | + #[cfg(any(feature = "_core-cm7", not(feature = "_core-cm4")))] |
| 40 | + const fn current() -> CoreId { |
| 41 | + CoreId::Core0 |
| 42 | + } |
| 43 | + |
| 44 | + #[cfg(feature = "_core-cm4")] |
| 45 | + const fn current() -> CoreId { |
| 46 | + CoreId::Core1 |
| 47 | + } |
| 48 | + |
| 49 | + fn as_index(&self) -> usize { |
| 50 | + match self { |
| 51 | + CoreId::Core0 => 0, |
| 52 | + CoreId::Core1 => 1, |
| 53 | + } |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | +/// TODO |
| 58 | +pub struct HardwareSemaphore<'d> { |
| 59 | + _peri: crate::Peri<'d, crate::peripherals::HSEM>, |
| 60 | +} |
| 61 | + |
| 62 | +impl<'d> HardwareSemaphore<'d> { |
| 63 | + /// Create a new HardwareSemaphore instance. |
| 64 | + pub fn new(peri: crate::Peri<'d, crate::peripherals::HSEM>) -> Self { |
| 65 | + HardwareSemaphore { _peri: peri } |
| 66 | + } |
| 67 | + |
| 68 | + /// Locks the semaphore via the 2-step (write) lock procedure |
| 69 | + /// |
| 70 | + /// The two-step procedure consists of a write to lock the semaphore, followed by a read |
| 71 | + /// to check if the lock has been successful, carried out from the HSEM_Rx retgister. |
| 72 | + pub fn two_step_lock(&mut self, sem_id: u8, process_id: u8) -> Result<(), HsemLockFailed> { |
| 73 | + HSEM.r(sem_id as usize).write(|w| { |
| 74 | + w.set_procid(process_id); |
| 75 | + w.set_coreid(CoreId::current() as u8); |
| 76 | + w.set_lock(true); |
| 77 | + }); |
| 78 | + |
| 79 | + let reg = HSEM.r(sem_id as usize).read(); |
| 80 | + |
| 81 | + match ( |
| 82 | + reg.lock(), |
| 83 | + reg.coreid() == CoreId::current() as u8, |
| 84 | + reg.procid() == process_id, |
| 85 | + ) { |
| 86 | + (true, true, true) => Ok(()), |
| 87 | + _ => Err(HsemLockFailed), |
| 88 | + } |
| 89 | + } |
| 90 | + |
| 91 | + /// Locks the semaphore via the 1-step (read) lock procedure |
| 92 | + /// |
| 93 | + /// The one-step procedure consists of a read to lock and check the semaphore in a single |
| 94 | + /// step, carried out from the HSEM_RLRx register. |
| 95 | + pub fn one_step_lock(&mut self, sem_id: u8) -> Result<(), HsemLockFailed> { |
| 96 | + let reg = HSEM.rlr(sem_id as usize).read(); |
| 97 | + |
| 98 | + match (reg.lock(), reg.coreid() == CoreId::current() as u8, reg.procid()) { |
| 99 | + (true, true, 0) => Ok(()), |
| 100 | + _ => Err(HsemLockFailed), |
| 101 | + } |
| 102 | + } |
| 103 | + |
| 104 | + /// Unlocks the semaphore |
| 105 | + /// |
| 106 | + /// Unlocking a semaphore is a protected process, to prevent accidental clearing by an AHB |
| 107 | + /// bus core ID or by a process not having the semaphore lock right. |
| 108 | + pub fn unlock(&mut self, sem_id: u8, process_id: u8) { |
| 109 | + HSEM.r(sem_id as usize).write(|w| { |
| 110 | + w.set_procid(process_id); |
| 111 | + w.set_coreid(CoreId::current() as u8); |
| 112 | + w.set_lock(false); |
| 113 | + }); |
| 114 | + } |
| 115 | + |
| 116 | + /// Unlocks all semahpores. |
| 117 | + /// |
| 118 | + /// All semaphores locked by a COREID can be unlocked at once by using the HSEM_CR register. |
| 119 | + /// Write COREID and correct KEY value in HSEM_CR. All locked semaphores with a matching |
| 120 | + /// COREID are unlocked, and may generate an interrupt if enabled. |
| 121 | + pub fn unlock_all(&mut self, key: u16, core_id: u8) { |
| 122 | + HSEM.cr().write(|w| { |
| 123 | + w.set_key(key); |
| 124 | + w.set_coreid(core_id); |
| 125 | + }) |
| 126 | + } |
| 127 | + |
| 128 | + /// Checks if the semaphore is locked. |
| 129 | + pub fn is_semaphore_locked(&self, sem_id: u8) -> bool { |
| 130 | + HSEM.r(sem_id as usize).read().lock() |
| 131 | + } |
| 132 | + |
| 133 | + /// Sets the clear (unlock) key |
| 134 | + pub fn set_clear_key(&mut self, key: u16) { |
| 135 | + HSEM.keyr().modify(|w| w.set_key(key)); |
| 136 | + } |
| 137 | + |
| 138 | + /// Gets the clear (unlock) key |
| 139 | + pub fn get_clear_key(&mut self) -> u16 { |
| 140 | + HSEM.keyr().read().key() |
| 141 | + } |
| 142 | + |
| 143 | + /// Sets the interrupt enable bit for the semaphore. |
| 144 | + pub fn enable_interrupt(&mut self, core_id: CoreId, sem_x: usize, enable: bool) { |
| 145 | + HSEM.ier(core_id.as_index()).modify(|w| w.set_ise(sem_x, enable)); |
| 146 | + } |
| 147 | + |
| 148 | + /// Clears the interrupt flag for the semaphore. |
| 149 | + pub fn clear_interrupt(&mut self, core_id: CoreId, sem_x: usize) { |
| 150 | + HSEM.icr(core_id.as_index()).write(|w| w.set_isc(sem_x, false)); |
| 151 | + } |
| 152 | + |
| 153 | + /// Gets the interrupt flag for the semaphore. |
| 154 | + pub fn is_interrupt_active(&mut self, core_id: CoreId, sem_x: usize) -> bool { |
| 155 | + HSEM.isr(core_id.as_index()).read().isf(sem_x) |
| 156 | + } |
| 157 | +} |
0 commit comments