Implementation of PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
https://arxiv.org/pdf/1612.00593.pdf
python3 train.py \
--dataset-path=./ModelNet10 \
--batch=32 \
--lr=1e-3 \
--epochs=100 \
--checkpoint-every=1 \
--evaluate-every=1 \
--checkpoint-path=./checkpoint-big-100 \
--jitter-augmentation=True \
--rotation-augmentation=False
python inference.py \
--checkpoint-path=./checkpoint-big-100/epoch-96.pt \
--obj-path=./ModelNet10/bathtub/train/bathtub_0001.off
We trained PointNet on ModelNet10 for 100 epochs with a batch size of 32 and a learning rate of 1e-3 using the Adam optimizer. We sample 1024 points from the surface of the mesh, normalize them to an unit sphere, and add gaussian noise with a mean of 0 and standard deviation of 0.02.
Overall | Bathtub | Bed | Chair | Desk | Dresser | Monitor | Nightstand | Sofa | Table | Toilet |
---|---|---|---|---|---|---|---|---|---|---|
90.2% | 92.0% | 95.0% | 98.0% | 88.4% | 91.9% | 96.0% | 55.8% | 100.0% | 85.0% | 96.0% |