We are developing a virtual doorman with artificial intelligence that replaces the human doorman, enabling audio communication with visitors, facial recognition for residents, and authorization via a mobile app. It also detects suspicious behavior and sends security alerts.
- Find appropriate models for the project.
- Comparison between LLM models.
- Create a modelfile.
- Parameters.
- Fine Tunning.
- Face Detector.
- Register Users based on Face.
- Classification based on Face.
- Comparison between models.
- Train or adapt a model for our purposes.
- Real-Time.
- Comparison between models.
- Train or adapt a model for our purposes.
- Real-Time.
- Convert into packages.
- esp32 collecting (microfone) and receiving (internet) audio packages from server in real time.
- TDP (the Tag Distribution Protocol).
- Integrate all functionalities with a mobile app.
A web application was made to test all the models and integrations.
docker compose up
or
pip install -r requirements
and run the main.py file.
https://docs.docker.com/engine/install/ubuntu/
# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
# Add the repository to Apt sources:
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "${UBUNTU_CODENAME:-$VERSION_CODENAME}") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
and then
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
How to setup docker with NVIDIA GPU support on Ubuntu 22
cd /tmp/
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-drivers-545 nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
Installing the NVIDIA Container Toolkit
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
then (optionally)
sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list
Update Package
sudo apt-get update
Install the NVIDIA Container Toolkit packages:
sudo apt-get install -y nvidia-container-toolkit
See all containers
docker ps
See all images
docker images
See all volumes
docker volume ls
Remove containers and images
docker compose down --rmi all
Remove all volumes
docker volume prune --all
clean up / identify contents of /var/lib/docker/overlay
(docker storage driver)
du -ahx / | sort -rh | head -50
ls /var/lib/docker/overlay2
remove all contents in storage driver
docker buildx prune --all
removal everything
docker system prune -a
go to Ollama Library an pick the most suitable model.