-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_benchmark.py
92 lines (78 loc) · 4.25 KB
/
plot_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import json
import matplotlib.pyplot as plt
import numpy as np
# discrete-wavelets is not included in the plot because it seems to be so much slower
include_discrete_wavelets = False
# Read benchmark results
with open('output/benchmark.json', 'r') as f:
data = json.load(f)
# Extract unique sizes and wavelets
sizes = sorted(set(b['size'] for b in data['benchmarks']))
wavelets = sorted(set(b['wavelet'] for b in data['benchmarks']))
# Set up the plot
fig, axes = plt.subplots(len(sizes) + 1, 1, figsize=(12, 10))
if include_discrete_wavelets:
fig.suptitle('Wasmlets vs Pywavelets vs Discrete-Wavelets Performance Comparison')
else:
fig.suptitle('Wasmlets vs Pywavelets Performance Comparison')
# Width of each bar and positions of bar groups
bar_width = 0.1 # Reduced width to fit more bars
r1 = np.arange(len(wavelets))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]
r4 = [x + bar_width for x in r3]
r5 = [x + bar_width for x in r4]
r6 = [x + bar_width for x in r5]
# Plot for each size
for size_idx, size in enumerate(sizes):
ax = axes[size_idx]
size_data = [b for b in data['benchmarks'] if b['size'] == size]
# Extract timing data for this size
wasmlets_dec = [next(b['wasmlets']['timings']['wavedec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
wasmlets_rec = [next(b['wasmlets']['timings']['waverec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
pywavelets_dec = [next(b['pywavelets']['timings']['wavedec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
pywavelets_rec = [next(b['pywavelets']['timings']['waverec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
pywavelets_wm_dec = [next(b['pywaveletsWithMarshalling']['timings']['wavedec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
pywavelets_wm_rec = [next(b['pywaveletsWithMarshalling']['timings']['waverec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
if include_discrete_wavelets:
discrete_dec = [next(b['discreteWavelets']['timings']['wavedec'] for b in size_data if b['wavelet'] == w) for w in wavelets]
# Handle undefined waverec timings for discrete-wavelets
discrete_rec = [next((b['discreteWavelets']['timings'].get('waverec') or float('nan')) for b in size_data if b['wavelet'] == w) for w in wavelets]
else:
discrete_dec = [float('nan')] * len(wavelets)
discrete_rec = [float('nan')] * len(wavelets)
# Create bars
ax.bar(r1, wasmlets_dec, width=bar_width, label='Wasmlets Decomp', color='skyblue')
ax.bar(r2, wasmlets_rec, width=bar_width, label='Wasmlets Recon', color='lightblue')
ax.bar(r3, pywavelets_dec, width=bar_width, label='Pywavelets Decomp', color='coral')
ax.bar(r4, pywavelets_rec, width=bar_width, label='Pywavelets Recon', color='salmon')
ax.bar(r5, pywavelets_wm_dec, width=bar_width, label='Pywavelets w. Marshalling Decomp', color='orange')
ax.bar(r6, pywavelets_wm_rec, width=bar_width, label='Pywavelets w. Marshalling Recon', color='wheat')
if include_discrete_wavelets:
ax.bar(r5, discrete_dec, width=bar_width, label='Discrete-Wavelets Decomposition', color='lightgreen')
# Only plot reconstruction bars for discrete-wavelets if they're not all NaN
if not all(np.isnan(discrete_rec)):
ax.bar(r5, discrete_rec, width=bar_width, label='Discrete-Wavelets Reconstruction', color='darkgreen')
# Customize plot
ax.set_title(f'Array Size: {size:,.0f}')
ax.set_xlabel('Wavelet Type')
ax.set_ylabel('Time (ms)')
ax.set_xticks([r + bar_width*2 for r in range(len(wavelets))]) # Adjusted center position
ax.set_xticklabels(wavelets)
if size == sizes[0]:
ax.legend()
ax.grid(True, alpha=0.3)
ax = axes[-1]
wasmlets_load = data['initializationTimings']['wasmlets']
pywavelets_load = data['initializationTimings']['pyodide']
ax.bar(0, wasmlets_load, width=bar_width, label='Wasmlets', color='skyblue')
ax.bar(1, pywavelets_load, width=bar_width, label='Pyodide+Pywt', color='coral')
ax.set_xticks([0, 1])
ax.set_xticklabels(['Wasmlets', 'Pyodide + Pywavelets'])
# log plot
ax.set_yscale('log')
ax.set_ylabel('Time (log ms)')
ax.legend()
ax.set_title('Startup')
plt.tight_layout()
plt.savefig('output/benchmark.png', dpi=300, bbox_inches='tight')