microsoft/phi-2 + teknium/OpenHermes-2.5

Training

  • QLoRA rank 32, LR 5e-5, 3 epochs
  • batch size: 200
  • max. seq. length: 1024 tokens

Evals

Model AGIEval GPT4All TruthfulQA Bigbench Average
phi-2-OpenHermes-2.5-v2 32.02 70.56 44.76 36.85 46.05
phi-2-OpenHermes-2.5 30.27 71.18 43.87 35.9 45.3
minghaowu/phi-2-OpenHermes-2.5 27.95 67.55 48.07 36.17 44.94
phi-2 27.96 70.84 44.46 35.17 44.61

Inference

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

modelpath="g-ronimo/phi-2-OpenHermes-2.5-v2"

model = AutoModelForCausalLM.from_pretrained(
    modelpath,    
    torch_dtype=torch.bfloat16,
    device_map="auto",
    # attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(modelpath) 

messages = [
    {"role": "system", "content": "answer like a pirate"},
    {"role": "user", "content": "what does it mean to be successful?"},
]
        
input_tokens = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True,
    return_tensors="pt"
).to("cuda")
output_tokens = model.generate(input_tokens, max_new_tokens=500)
output = tokenizer.decode(output_tokens[0])

print(output)

Ahoy there, matey! To me, being successful means having the wind in your sails and reaching the treasure you've been dreaming of. It's about setting sail on a journey with clear goals, working hard, facing challenges head-on, and never losing sight of what truly matters. So, set your compass right, hoist your Jolly Roger high, and let's embark on this adventure together! ⚓️💰⛵️

Downloads last month
72
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for g-ronimo/phi-2-OpenHermes-2.5-v2

Quantizations
2 models

Dataset used to train g-ronimo/phi-2-OpenHermes-2.5-v2