Asteroid model groadabike/ConvTasNet_DAMP-VSEP_enhboth

Imported from Zenodo

Description:

This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.

Training config:

data:
    channels: 1
    n_src: 2
    root_path: data
    sample_rate: 16000
    samples_per_track: 10
    segment: 3.0
    task: enh_both
filterbank:
    kernel_size: 20
    n_filters: 256
    stride: 10
main_args:
    exp_dir: exp/train_convtasnet
    help: None
masknet:
    bn_chan: 256
    conv_kernel_size: 3
    hid_chan: 512
    mask_act: relu
    n_blocks: 8
    n_repeats: 4
    n_src: 2
    norm_type: gLN
    skip_chan: 256
optim:
    lr: 0.0003
    optimizer: adam
    weight_decay: 0.0
positional arguments:
training:
   batch_size: 12
    early_stop: True
    epochs: 50
    half_lr: True
    num_workers: 12

Results:

si_sdr: 14.018196157142519
si_sdr_imp: 14.017103133809577
sdr: 14.498517291333885
sdr_imp: 14.463389151567865
sir: 24.149634529133372
sir_imp: 24.11450638936735
sar: 15.338597389045935
sar_imp: -137.30634122401517
stoi: 0.7639416744417206
stoi_imp: 0.1843383526963759

License notice:

This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.

Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.