-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
66 lines (56 loc) · 2.2 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
def train_model(train_loader, model, optimizer, criterion, device):
"""
Note: train_loss and train_acc is accurate only if set drop_last=False in loader
:param train_loader: y: one_hot float tensor
:param model:
:param optimizer:
:param criterion: set reduction='sum'
:param device:
:return:
"""
model.train(mode=True)
train_loss = 0
correct = 0
for batch_idx, (x, y) in enumerate(train_loader):
x, y = x.to(device), y.to(device)
global_prob = model(x)[0]
if isinstance(criterion, torch.nn.CrossEntropyLoss):
_, yi = y.max(dim=1)
loss = criterion(global_prob, yi)
else:
loss = criterion(global_prob, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
with torch.no_grad():
pred = global_prob.max(1, keepdim=True)[1] # get the index of the max log-probability
_, y_idx = y.max(dim=1)
correct += pred.eq(y_idx.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
train_acc = correct / len(train_loader.dataset)
return {'loss': train_loss, 'acc': train_acc}
def eval_model(test_loader, model, criterion, device):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
global_prob = model(data)[0]
# to make BCELoss stable, avoid log(0)
# global_prob.clamp_(min=1e-7, max=1 - 1e-7)
if isinstance(criterion, torch.nn.CrossEntropyLoss):
_, yi = target.max(dim=1)
loss = criterion(global_prob, yi)
else:
loss = criterion(global_prob, target)
test_loss += loss.item()
# get the index of the max log-probability
pred = global_prob.max(1, keepdim=True)[1]
_, target_idx = target.max(dim=1)
correct += pred.eq(target_idx.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_acc = correct / len(test_loader.dataset)
return {'loss': test_loss, 'acc': test_acc}