This is the code for the paper arxiv:1904.05204 (download)
The paper is submitted to Interspeech 2019.
- create env and activate
conda create -n distinct_events_asc python=3.6 pip
source activate distinct_events_asc
- install pytorch torchvision from pytorch channel
conda install pytorch torchvision -c pytorch
- install requirements with pip
pip install -r requirements.txt
- if want to run jupyter notebook examples, install a
kernelspec
for env
conda install jupyter ipykernel
python -m ipykernel install --user --name distinct_events_asc --display-name 'python3.6(distinct_events_asc)'
NOTE: before use, config data_manager.cfg properly
- create file
data_manager.cfg
underdata_manager/
- specify dev_path to point to dcase2018 Task1 SubTaskB dataset
[DEFAULT]
[dcase18_taskb]
dev_path = /PathTo.../dcase2018_baseline/task1/datasets/TUT-urban-acoustic-scenes-2018-mobile-development
[logmel]
sr = 44100
n_fft = 1764
hop_length = 882
n_mels = 40
fmax = 22050
- extract and store feature in .h5 file
# generate .h5 files under data_manager/data_h5
python data_manager/dcase18_taskb.py
# generate scaler .h5 under data_manager/data_h5
python data_manager/taskb_standrizer.py
- open
jupyter notebook
orjupyter lab
- run experiments notebooks under
jupyter_exp/
- BibLatex
@online{1904.05204,
Author = {Hongwei Song and Jiqing Han and Shiwen Deng and Zhihao Du},
Title = {Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events},
Year = {2019},
Eprint = {1904.05204},
Eprinttype = {arXiv},
}
- Bibtex
@misc{1904.05204,
Author = {Hongwei Song and Jiqing Han and Shiwen Deng and Zhihao Du},
Title = {Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events},
Year = {2019},
Eprint = {arXiv:1904.05204},
}