See axolotl config
axolotl version: 0.3.0
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
hub_model_id: "hamel/tokenfight"
tokenfight
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0035
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1753 | 0.01 | 1 | 1.1604 |
0.9235 | 0.25 | 20 | 0.9296 |
1.1097 | 0.5 | 40 | 0.9156 |
0.9275 | 0.76 | 60 | 0.9006 |
1.0284 | 1.01 | 80 | 0.8942 |
0.8905 | 1.26 | 100 | 0.8930 |
0.8952 | 1.51 | 120 | 0.9071 |
0.8816 | 1.77 | 140 | 0.9189 |
0.7187 | 2.02 | 160 | 0.9026 |
0.5115 | 2.27 | 180 | 0.9251 |
0.6322 | 2.52 | 200 | 0.9525 |
0.7149 | 2.78 | 220 | 0.9638 |
0.5881 | 3.03 | 240 | 0.9699 |
0.5596 | 3.28 | 260 | 0.9750 |
0.4989 | 3.53 | 280 | 1.0047 |
0.3654 | 3.79 | 300 | 1.0035 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0
- Downloads last month
- 8
Model tree for hamel/tokenfight
Base model
NousResearch/Llama-2-7b-hf