Official implementation of "LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models"
March, 2025: initial commit.
The 2016 AAPM-Mayo dataset can be downloaded from: CT Clinical Innovation Center (B30 kernel)
The 2020 AAPM-Mayo dataset can be downloaded from: cancer imaging archive
Mayo2016_2d/
|--train/
|--quarter_1mm/
train_quarter_00001.npy
train_quarter_00002.npy
train_quarter_00003.npy
...
|--full_1mm/
train_full_00001.npy
train_full_00002.npy
train_full_00003.npy
...
|--test/
|--quarter_1mm
|--full_1mm
- Linux Platform
- torch==1.12.1+cu113 # depends on the CUDA version of your machine
- torchvision==0.13.1+cu113
- Python==3.8.0
- numpy==1.22.3
Build per-layer candidate token:python process_words.py
Then we used the official repository of VQ-GAN (https://github.com/CompVis/taming-transformers) to set up training. Please refer to (models/taming) to learn about our modifications to original VQ-GAN.
python train.py --name LangMamba(experiment_name) --model langmamba --dataroot /data/zhchen/Mayo2016_2d(path to images) --lr 0.0002 --gpu_ids 6,7 --print_freq 25 --batch_size 8 --lr_policy cosine
python test.py --name LangMamba(experiment_name) --model langmamba --results_dir test_results --result_name test_results(path to save image) --gpu_ids 6 --batch_size 1 --eval
Please refer to options files for more setting.