-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
eb7f103
commit b7ac02f
Showing
7 changed files
with
530 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
from __future__ import print_function | ||
|
||
import argparse | ||
import os | ||
import sys | ||
import time | ||
from PIL import Image | ||
import tensorflow as tf | ||
import numpy as np | ||
from scipy import misc | ||
|
||
from model import FCN8s | ||
from tools import * | ||
|
||
save_dir = './output/' | ||
model_path = './model/fcn_iter_160000.npy' | ||
|
||
def get_arguments(): | ||
parser = argparse.ArgumentParser(description="Reproduced PSPNet") | ||
parser.add_argument("--img-path", type=str, default='', | ||
help="Path to the RGB image file.", | ||
required=True) | ||
parser.add_argument("--save-dir", type=str, default=save_dir, | ||
help="Path to save output.") | ||
|
||
return parser.parse_args() | ||
|
||
def main(): | ||
args = get_arguments() | ||
|
||
model = FCN8s() | ||
model.read_input(args.img_path) | ||
|
||
# Init tf Session | ||
config = tf.ConfigProto() | ||
config.gpu_options.allow_growth = True | ||
sess = tf.Session(config=config) | ||
init = tf.global_variables_initializer() | ||
|
||
sess.run(init) | ||
|
||
model.load(model_path, sess) | ||
|
||
preds = model.forward(sess) | ||
|
||
if not os.path.exists(args.save_dir): | ||
os.makedirs(args.save_dir) | ||
misc.imsave(args.save_dir + model.filename, preds[0]) | ||
|
||
if __name__ == '__main__': | ||
main() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from network import Network | ||
from tools import * | ||
import tensorflow as tf | ||
import os | ||
|
||
class FCN8s(Network): | ||
def __init__(self, is_training=False, num_classes=151, input_size=[384, 384]): | ||
self.input_size = input_size | ||
|
||
self.x = tf.placeholder(dtype=tf.float32, shape=[None, None, 3]) | ||
self.img_tf = preprocess(self.x, self.input_size) | ||
|
||
super().__init__({'data': self.img_tf}, num_classes, is_training) | ||
|
||
def setup(self, is_training, num_classes): | ||
(self.feed('data') | ||
.zero_padding(paddings=100, name='padding1') | ||
.conv(3, 3, 64, 1, 1, name='conv1_1') | ||
.zero_padding(paddings=1, name='padding2') | ||
.conv(3, 3, 64, 1, 1, name='conv1_2') | ||
.max_pool(2, 2, 2, 2, name='pool1') | ||
.zero_padding(paddings=1, name='padding3') | ||
.conv(3, 3, 128, 1, 1, name='conv2_1') | ||
.zero_padding(paddings=1, name='padding4') | ||
.conv(3, 3, 128, 1, 1, name='conv2_2') | ||
.zero_padding(paddings=1, name='padding5') | ||
.max_pool(2, 2, 2, 2, name='pool2') | ||
.zero_padding(paddings=1, name='padding6') | ||
.conv(3, 3, 256, 1, 1, name='conv3_1') | ||
.zero_padding(paddings=1, name='padding7') | ||
.conv(3, 3, 256, 1, 1, name='conv3_2') | ||
.zero_padding(paddings=1, name='padding8') | ||
.conv(3, 3, 256, 1, 1, name='conv3_3') | ||
.max_pool(2, 2, 2, 2, name='pool3') | ||
.scale(0.00001, name='scale_pool3') | ||
.conv(1, 1, num_classes, 1, 1, name='score_pool3')) | ||
|
||
(self.feed('pool3') | ||
.zero_padding(paddings=1, name='padding9') | ||
.conv(3, 3, 512, 1, 1, name='conv4_1') | ||
.zero_padding(paddings=1, name='padding10') | ||
.conv(3, 3, 512, 1, 1, name='conv4_2') | ||
.zero_padding(paddings=1, name='padding11') | ||
.conv(3, 3, 512, 1, 1, name='conv4_3') | ||
.zero_padding(paddings=1, name='padding12') | ||
.max_pool(2, 2, 2, 2, name='pool4') | ||
.scale(0.01, name='scale_pool4') | ||
.conv(1, 1, num_classes, 1, 1, name='score_pool4')) | ||
|
||
(self.feed('pool4') | ||
.zero_padding(paddings=1, name='padding13') | ||
.conv(3, 3, 512, 1, 1, name='conv5_1') | ||
.zero_padding(paddings=1, name='padding14') | ||
.conv(3, 3, 512, 1, 1, name='conv5_2') | ||
.zero_padding(paddings=1, name='padding15') | ||
.conv(3, 3, 512, 1, 1, name='conv5_3') | ||
.zero_padding(paddings=1, name='padding16') | ||
.max_pool(2, 2, 2, 2, name='pool5') | ||
.conv(7, 7, 4096, 1, 1, name='fc6') | ||
.conv(1, 1, 4096, 1, 1, name='fc7') | ||
.conv(1, 1, num_classes, 1, 1, name='score_fr') | ||
.deconv(4, 4, num_classes, 2, 2, name='upscore2')) | ||
|
||
(self.feed('upscore2', 'score_pool4') | ||
.crop(5, name='score_pool4c')) | ||
|
||
(self.feed('upscore2', 'score_pool4c') | ||
.add(name='fuse_pool4') | ||
.deconv(4, 4, num_classes, 2, 2, name='upscore_pool4')) | ||
|
||
(self.feed('upscore_pool4', 'score_pool3') | ||
.crop(9, name='score_pool3c')) | ||
|
||
(self.feed('upscore_pool4', 'score_pool3c') | ||
.add(name='fuse_pool3') | ||
.deconv(16, 16, num_classes, 8, 8, name='upscore8')) | ||
|
||
(self.feed('data', 'upscore8') | ||
.crop(31, name='score')) | ||
|
||
score = self.layers['score'] | ||
score = tf.argmax(score, dimension=3) | ||
self.pred = decode_labels(score, self.input_size, num_classes) | ||
|
||
def read_input(self, img_path): | ||
self.img, self.filename = load_img(img_path) | ||
|
||
def forward(self, sess): | ||
return sess.run(self.pred, feed_dict={self.x: self.img}) |
Oops, something went wrong.