ONNX usage
#14
by
hexgrad
- opened
Quick and dirty ONNX usage:
# Assuming you are in the Kokoro-82M directory
!pip install onnxruntime
from onnxruntime import InferenceSession
# Tokens produced by phonemize() and tokenize() in kokoro.py
tokens = [50, 157, 43, 135, 16, 53, 135, 46, 16, 43, 102, 16, 56, 156, 57, 135, 6, 16, 102, 62, 61, 16, 70, 56, 16, 138, 56, 156, 72, 56, 61, 85, 123, 83, 44, 83, 54, 16, 53, 65, 156, 86, 61, 62, 131, 83, 56, 4, 16, 54, 156, 43, 102, 53, 16, 156, 72, 61, 53, 102, 112, 16, 70, 56, 16, 138, 56, 44, 156, 76, 158, 123, 56, 16, 62, 131, 156, 43, 102, 54, 46, 16, 102, 48, 16, 81, 47, 102, 54, 16, 54, 156, 51, 158, 46, 16, 70, 16, 92, 156, 135, 46, 16, 54, 156, 43, 102, 48, 4, 16, 81, 47, 102, 16, 50, 156, 72, 64, 83, 56, 62, 16, 156, 51, 158, 64, 83, 56, 16, 44, 157, 102, 56, 16, 44, 156, 76, 158, 123, 56, 4]
# Context length is 512, but leave room for the pad token 0 at the start & end
assert len(tokens) <= 510, len(tokens)
# Style vector based on len(tokens), ref_s has shape (1, 256)
ref_s = torch.load('voices/af.pt')[len(tokens)].numpy()
# Add the pad ids, and reshape tokens, should now have shape (1, <=512)
tokens = [[0, *tokens, 0]]
sess = InferenceSession('kokoro-v0_19.onnx')
audio = sess.run(None, dict(
tokens=tokens,
style=ref_s,
speed=np.ones(1, dtype=np.float32)
))[0]
from IPython.display import display, Audio
display(Audio(data=audio, rate=24000, autoplay=True))
!pip install onnxruntime # NotImplementedError: A UTF-8 locale is required. Got ANSI_X3.4-1968
# # 1️⃣ Install dependencies silently
!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch
## 1️⃣ Instalar dependencias necesarias
!pip install -q pydub
# Assuming you are in the Kokoro-82M directory
from models import build_model
import torch
import numpy as np
from onnxruntime import InferenceSession
# Tokens produced by phonemize() and tokenize() in kokoro.py
tokens = [50, 157, 43, 135, 16, 53, 135, 46, 16, 43, 102, 16, 56, 156, 57, 135, 6, 16, 102, 62, 61, 16, 70, 56, 16, 138, 56, 156, 72, 56, 61, 85, 123, 83, 44, 83, 54, 16, 53, 65, 156, 86, 61, 62, 131, 83, 56, 4, 16, 54, 156, 43, 102, 53, 16, 156, 72, 61, 53, 102, 112, 16, 70, 56, 16, 138, 56, 44, 156, 76, 158, 123, 56, 16, 62, 131, 156, 43, 102, 54, 46, 16, 102, 48, 16, 81, 47, 102, 54, 16, 54, 156, 51, 158, 46, 16, 70, 16, 92, 156, 135, 46, 16, 54, 156, 43, 102, 48, 4, 16, 81, 47, 102, 16, 50, 156, 72, 64, 83, 56, 62, 16, 156, 51, 158, 64, 83, 56, 16, 44, 157, 102, 56, 16, 44, 156, 76, 158, 123, 56, 4]
# Context length is 512, but leave room for the pad token 0 at the start & end
assert len(tokens) <= 510, len(tokens)
# Style vector based on len(tokens), ref_s has shape (1, 256)
# ref_s = torch.load('voices/af.pt')[len(tokens)].numpy()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
'af', # Default voice is a 50-50 mix of Bella & Sarah
'af_bella', 'af_sarah', 'am_adam', 'am_michael',
'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
'af_nicole', 'af_sky',
][6]
VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt')[len(tokens)].numpy()
print(f'Loaded voice: {VOICE_NAME}')
# Add the pad ids, and reshape tokens, should now have shape (1, <=512)
tokens = [[0, *tokens, 0]]
sess = InferenceSession('kokoro-v0_19.onnx')
audio = sess.run(None, dict(
tokens=tokens,
style=VOICEPACK,
speed=np.ones(1, dtype=np.float32)
))[0]
from IPython.display import display, Audio
display(Audio(data=audio, rate=24000, autoplay=True))
Im getting an error with CoreML
>>> from onnxruntime import InferenceSession
>>> sess = InferenceSession('kokoro-v0_19.onnx', providers=['CoreMLExecutionProvider'])
2025-01-02 15:26:59.464091 [W:onnxruntime:, helper.cc:88 IsInputSupported] CoreML does not support shapes with dimension values of 0. Input:/Slice_1_output_0, shape: {0}
2025-01-02 15:26:59.464275 [W:onnxruntime:, helper.cc:88 IsInputSupported] CoreML does not support shapes with dimension values of 0. Input:/decoder/generator/m_source/l_sin_gen/Slice_output_0, shape: {0}
2025-01-02 15:26:59.464510 [W:onnxruntime:, helper.cc:82 IsInputSupported] CoreML does not support input dim > 16384. Input:decoder.generator.stft.stft.window_sum, shape: {5000015}
2025-01-02 15:26:59.465130 [W:onnxruntime:, coreml_execution_provider.cc:115 GetCapability] CoreMLExecutionProvider::GetCapability, number of partitions supported by CoreML: 123 number of nodes in the graph: 2361 number of nodes supported by CoreML: 949
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "venv/lib/python3.12/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 465, in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
File "venv/lib/python3.12/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 537, in _create_inference_session
sess.initialize_session(providers, provider_options, disabled_optimizers)
onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : model_builder.cc:768 RegisterModelInputOutput Unable to get shape for output: /Squeeze_output_0
Thanks for the usage!
I published ready to use package here
Quick and dirty ONNX usage:
# Assuming you are in the Kokoro-82M directory
Can you share the code used to convert it to onnx? I would like to try quantize it to fp16 / int8 for faster inference
Also, is there some Github repository related to the project? as it's easy to work with code in Github rather than HuggingFace
+1, also wondering if ONNX conversion code will be released
Great stuff @hexgrad ! I'd love to work on batched generation ONNX support (currently it only supports batch_size=1) - could you share your conversion script for me to use as a starting point?