-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Updated version of the crosscorr analysis
- Loading branch information
1 parent
afeb15d
commit 3f634eb
Showing
2 changed files
with
224 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
#Fait par: Fabian Tito Arandia Martinez | ||
#Date de création: 2020-02-21 | ||
#Objectif: Analyse des corrélations. | ||
#Modifier par Leslie Dolcine 02/09/2022 | ||
|
||
|
||
################################## | ||
#Analyse des séries stochastiques# | ||
################################## | ||
rm(list=ls()) | ||
|
||
filename<-paste("H:\\Projets_communs\\2020\\Outaouais PRsim\\01_Intrants\\Example Rdata pour Leslie\\stoch_sim_10_outaouais_Kappa_1_9997_LD.Rdata") | ||
|
||
load(filename) | ||
|
||
simulations_multi_sites<-list(stoch_sim[[1]]$simulation,stoch_sim[[2]]$simulation,stoch_sim[[3]]$simulation,stoch_sim[[4]]$simulation) | ||
|
||
sim <- stoch_sim[[1]]$simulation | ||
#sim<-simulations_multi_sites | ||
#deseasonalized | ||
require(deseasonalize) | ||
out<-ds(sim$Qobs) | ||
des<-out$z | ||
# periodogram of deseasonalized | ||
kern <- kernel("modified.daniell",c(10,10))#verifier si la taille fait du sens | ||
sp1 <- spec.pgram(sim$Qobs, k=kern, taper=0, log="no", plot=FALSE) | ||
sp2 <- spec.pgram(des, k=kern, taper=0, log="no", plot=FALSE) | ||
plot(sp1, xlim=c(0,.05)) | ||
plot( sp2, add=T, col=2) | ||
|
||
# Peaks correspond to the following cycles: | ||
1/sp1$freq[head(order(sp1$spec, decreasing=TRUE))] | ||
|
||
# compare periodogram of simulated series | ||
plot(sp1, xlim=c(0,.05)) # would be nice to identify the peaks... | ||
for (i in grep("r",names(sim))) { | ||
spi <- spec.pgram(sim[,i], k=kern, taper=0, log="no", plot=FALSE)#probleme a elucider | ||
plot( spi, add=T, col="gray") | ||
} | ||
|
||
sp3 <- spec.pgram(sim$Qobs, taper=0, log="no", plot=FALSE) | ||
1/sp3$freq[head(order(sp3$spec, decreasing=TRUE))] | ||
|
||
|
||
### plot mean regime for each simulation run and compare to observed regime | ||
### define plotting colors | ||
col_sim <- adjustcolor("#fd8d3c",alpha=0.8) | ||
col_sim_tran <- adjustcolor("#fd8d3c",alpha=0.2) | ||
col_obs <- adjustcolor( "black", alpha.f = 0.2) | ||
|
||
year <- unique(sim$YYYY) | ||
|
||
### compute mean runoff hydrograph | ||
sim$day_id <- rep(seq(1:365),times=length(year)) | ||
mean_hydrograph_obs <- aggregate(sim$Qobs, by=list(sim$day_id), FUN=mean,simplify=FALSE) | ||
plot(unlist(mean_hydrograph_obs[,2]), lty=1, lwd=1, col="black", ylab=expression(paste("Discharge [m"^3,"/s]")), | ||
xlab="Time [d]", main="Mean hydrographs", ylim=c(0,max(unlist(mean_hydrograph_obs[,2]))*1.5),type="l") | ||
|
||
### add mean runoff hydrographs | ||
for(r in 6:(length(names(sim))-1)){ | ||
mean_hydrograph <- aggregate(sim[,r], by=list(sim$day_id), FUN=mean,simplify=FALSE) | ||
lines(mean_hydrograph, lty=1, lwd=1, col=col_sim) | ||
} | ||
### redo observed mean | ||
lines(mean_hydrograph_obs, lty=1, lwd=1, col="black") | ||
|
||
### autocorrelation | ||
acf_mare <- list() | ||
acf_obs <- acf(sim$Qobs, plot=FALSE) | ||
plot(acf_obs$acf, type="l", xlab="Lag", main="Autocorrelation", ylab="ACF") | ||
for(r in 6:(length(names(sim))-2)){ | ||
meanr<-mean(sim[,6], na.rm = TRUE) | ||
simr<- sim[,r] | ||
simr[is.na(simr)]<-meanr | ||
acf_sim <- acf(simr, plot=FALSE)#probleme de distribution de R? | ||
lines(acf_sim$acf, col=col_sim, type="l") | ||
### compute mean relative error in the acf | ||
acf_mare[[r]]<- mean(abs((acf_obs$acf-acf_sim$acf)/acf_obs$acf)) | ||
} | ||
lines(acf_obs$acf) | ||
|
||
### partial autocorrelation function | ||
pacf_obs <- pacf(sim$Qobs, plot=FALSE) | ||
pacf_mare <- list() | ||
plot(pacf_obs$acf, type="l", xlab="Lag", main="Partial autocorrelation", ylab="PACF") | ||
for(r in 6:(length(names(sim))-2)){ | ||
meanr<-mean(sim[,6], na.rm = TRUE) | ||
simr<- sim[,r] | ||
simr[is.na(simr)]<-meanr | ||
pacf_sim <- pacf(simr, plot=FALSE) | ||
lines(pacf_sim$acf, col=col_sim, type="l") | ||
### compute mean relative error in the acf | ||
pacf_mare[[r]] <- mean(abs((pacf_obs$acf-pacf_sim$acf)/pacf_obs$acf)) | ||
} | ||
lines(pacf_obs$acf) | ||
|
||
### compute seasonal statistics | ||
### Q50,Q05,Q95, boxplots | ||
### define seasons: Winter:12,1,2; spring:3,4,5; summer: 6,7,8; fall: 9,10,11 | ||
sim$season <- "winter" | ||
sim$season[which(sim$MM%in%c(3,4,5))] <- "spring" | ||
sim$season[which(sim$MM%in%c(6,7,8))] <- "summer" | ||
sim$season[which(sim$MM%in%c(9,10,11))] <- "fall" | ||
|
||
### all simulated series show the same seasonal statistics. plot only one | ||
boxplot(sim$Qobs[which(sim$season=="winter")], sim$r1[which(sim$season=="winter")], | ||
sim$Qobs[which(sim$season=="spring")], sim$r1[which(sim$season=="spring")], | ||
sim$Qobs[which(sim$season=="summer")], sim$r1[which(sim$season=="summer")], | ||
sim$Qobs[which(sim$season=="fall")], sim$r1[which(sim$season=="fall")], | ||
border=c("black", col_sim, "black", col_sim, "black", col_sim, "black", col_sim), | ||
xaxt="n", main="Seasonal statistics", outline=FALSE) | ||
mtext(side=1, text=c("Winter", "Spring", "Summer", "Fall"), at=c(1.5,3.5,5.5,7.5)) | ||
|
||
############################### | ||
#Calcul des pointes mensuelles# | ||
############################### | ||
|
||
df_max_prt<-df %>% na.pass() %>% select(DATE,DEBIT) %>% | ||
gather(variable, value, -DATE) %>% mutate(MONTH = as.numeric(format(DATE, "%m")), YEAR = format(DATE, "%Y")) %>% | ||
filter(YEAR>1910 & YEAR<2020) %>% | ||
filter(MONTH == 3 | MONTH == 4 | MONTH == 5| MONTH == 6) %>% group_by(variable,YEAR) %>% summarise(max_year_prt = max(value) ) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
#Fait par: Fabian Tito Arandia Martinez | ||
#Date de cr?ation: 2020-02-21 | ||
#Objectif: Analyse des corr?lations. | ||
|
||
################################## | ||
#Analyse des s?ries stochastiques# | ||
################################## | ||
|
||
rm(list=ls()) | ||
filename<-paste("H:\\Projets_communs\\2020\\Outaouais PRsim\\01_Intrants\\Example Rdata pour Leslie\\stoch_sim_10_outaouais_Kappa_1_9997_LD.Rdata") | ||
|
||
load(filename) | ||
#sim <- stoch_sim[[1]]$simulation #Qobs, r1 | ||
|
||
sim<-list(stoch_sim[[1]]$simulation,stoch_sim[[2]]$simulation,stoch_sim[[3]]$simulation,stoch_sim[[4]]$simulation) | ||
|
||
|
||
|
||
###################################################################### | ||
#Tests sur la Gatineau # | ||
#Bassins ? tenir en compte: Cabonga,Baskatong,Maniwaki,Paugan,Chelsea# | ||
###################################################################### | ||
|
||
filename2<-paste("H:\\Projets_communs\\2020\\Outaouais PRsim\\02_Calculs\\Resultats\\obs_outaouais_harm_complet-11-2021.Rdata") | ||
load(filename2) | ||
bvs<-names(stoch_sim) | ||
names(stoch_sim)<-bvs | ||
|
||
#index<-match(c('Cabonga','Baskatong','Maniwaki','Paugan','Chelsea'),bvs) | ||
|
||
|
||
#filename<-paste('/home/tito/Desktop/sims_kappaLD/stoch_sim_10_outaouais_Kappa_1000_LD.Rdata') | ||
#load(filename) | ||
|
||
sim<-list() | ||
|
||
choix_graphe<- readline(prompt="Quel système? (1: Gatineau,2:Outaouais Supérieur,) : ") | ||
|
||
if(choix_graphe==1){ | ||
#attention en construisant la liste par riviere | ||
for(i in c('Cabonga','Baskatong','Maniwaki','Paugan','Chelsea')){ | ||
sim[[i]]<-stoch_sim[[i]]$simulation | ||
} | ||
} else { | ||
|
||
for(i in c('Dozois','Lac Victoria et lac Granet','Rapide-7','Kipawa','Lac des Quinze','Lac Temiscamingue a Angliers')){ | ||
sim[[i]]<-stoch_sim[[i]]$simulation | ||
} | ||
|
||
} | ||
|
||
|
||
### | ||
|
||
|
||
# #define plotting colors | ||
col_sim<-adjustcolor("#fd8d3c",alpha=0.8) | ||
col_sim_tran <- adjustcolor("#fd8d3c",alpha=0.2) | ||
col_obs <- adjustcolor( "black", alpha.f = 0.2) | ||
|
||
# | ||
# ### plot cross-correlation function | ||
par(mfrow=c(length(sim),length(sim)),mar=c(1,1,2,2))# | ||
|
||
### run through each station comtination | ||
#meilleure façon d'avoir un seul xlabel y ylabel c'est de passer par ggplot2. | ||
#https://stackoverflow.com/questions/20163877/how-to-have-a-single-xlabel-and-ylabel-for-multiple-plots-on-the-same-page | ||
bvs<-names(sim) | ||
for(j in 1:length(sim)){ | ||
for(i in 1:length(sim)){ | ||
### ccf of observations | ||
data_mat <- matrix(unlist(lapply(sim, "[", , "Qobs")),ncol=length(sim)) | ||
ccf_obs <- ccf(data_mat[,i],data_mat[,j],plot=FALSE) | ||
### plot ccfs of observations | ||
bv_bv_ccf<-paste(bvs[i],'-',bvs[j],sep='') | ||
plot(ccf_obs$lag,ccf_obs$acf,col=col_obs,type="l",ylim=c(0,1),main=bv_bv_ccf)#,xaxt='n',yaxt='n' | ||
|
||
### simulated ccf | ||
### run through each simulation run | ||
for(r in 1:10){ | ||
data_mat_sim <- matrix(unlist(lapply(sim, "[", , paste("r",r,sep=""))),ncol=length(sim)) | ||
ccf_sim <- ccf(na.omit(cbind(data_mat_sim[,i],data_mat_sim[,j]))[,1],na.omit(cbind(data_mat_sim[,i],data_mat_sim[,j]))[,2],plot=FALSE) | ||
### add one ccf plot per simulation run | ||
lines(ccf_obs$lag,ccf_sim$acf,col=col_sim) | ||
grid (NULL,NULL, lty = 1, col = "grey") | ||
} | ||
### overplot observations again | ||
lines(ccf_obs$lag,ccf_obs$acf,col="black",lwd=2) | ||
} | ||
} | ||
|