Skip to content

Initial assessment of alternative double quantization tuning strategies #535

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions auto_round/autoround.py
Original file line number Diff line number Diff line change
Expand Up @@ -1351,11 +1351,13 @@ def quant_block(self, block, input_ids, input_others, q_input=None, device=torch
for n, m in block.named_modules():
if hasattr(m, "orig_layer"):
for key in m.params.keys():
# breakpoint()
if "min" in key or "max" in key:
minmax_params.append(m.params[key])
else:
round_params.append(m.params[key])


if self.enable_minmax_tuning:
optimizer = self.optimizer(
[{"params": round_params}, {"params": minmax_params, "lr": self.minmax_lr}], lr=self.lr, weight_decay=0
Expand Down
21 changes: 10 additions & 11 deletions auto_round/data_type/int.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,17 +64,17 @@ def quant_tensor_sym(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scal


## the values should be positive
def double_quant_tensor(tensor, bits, q_scale_thresh):
def double_quant_tensor(tensor, bits, q_scale_thresh, coeef):
maxq = 2 ** bits - 1
wmax = torch.clamp(tensor.max(-1)[0], min=0)
scale = torch.clamp(wmax / maxq, q_scale_thresh)
scale = torch.clamp(wmax / maxq, q_scale_thresh) * coeef
scale = scale.view(-1, 1)
qdq_tensor = torch.clamp(round_ste(tensor / scale), max=maxq) * scale
return qdq_tensor, scale


@register_dtype("int_asym_dq")
def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scale=1.0, scale_dtype=torch.float16,
def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_scale=1.0, k_wm=1.0, k_scale=1.0, scale_dtype=torch.float16,
tensor_min=None, tensor_max=None, q_scale_thresh=1e-5, super_group_size=8, super_bits=6,
**kwargs):
"""Quantize and de-quantize tensor asymmetrically.
Expand Down Expand Up @@ -104,8 +104,8 @@ def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_
wmin_tmp = tensor_min
wmax_tmp = tensor_max
if isinstance(min_scale, torch.Tensor):
wmin = wmin_tmp * min_scale
wmax = wmax_tmp * max_scale
wmin = wmin_tmp * min_scale #* k_wm
wmax = wmax_tmp * max_scale #* k_scale
else:
wmin = wmin_tmp
wmax = wmax_tmp
Expand All @@ -114,20 +114,19 @@ def quant_tensor_asym_dq(tensor, bits=4, group_size=-1, v=0, min_scale=1.0, max_
scale = scale.view(-1, super_group_size)
wmin_m = -wmin # pylint: disable=E1130
wmin_m = wmin_m.view(-1, super_group_size)

##conduct double quant
scale, d_scale = double_quant_tensor(scale, super_bits, q_scale_thresh)
wmin_m, d_wmin_m = double_quant_tensor(wmin_m, super_bits, q_scale_thresh)
scale, d_scale = double_quant_tensor(scale, super_bits, q_scale_thresh, k_scale)
wmin_m, d_wmin_m = double_quant_tensor(wmin_m, super_bits, q_scale_thresh, k_wm)

scale = scale.view(-1, 1)
scale = torch.clamp(scale, q_scale_thresh)
wmin_m = wmin_m.view(-1, 1)

int_w = round_ste(tensor / scale + v)
q = torch.clamp(int_w + round_ste(wmin_m / scale), 0, maxq)
int_w = round_ste((tensor + wmin_m) / scale + v)
q = torch.clamp(int_w, 0, maxq)
qdq_result = (scale * q - wmin_m).to(tensor.dtype)
qdq_result = revert_tensor_by_pad(qdq_result, orig_shape=orig_shape, pad_len=pad_len)
zp = round_ste(wmin_m / scale) # remove this later
#zp = round_ste(wmin_m / scale) # remove this later
return qdq_result, {"scale": scale, "d_scale": d_scale}, {"wmin_m": wmin_m, "d_wmin_m": d_wmin_m}


Expand Down
Loading