-
Notifications
You must be signed in to change notification settings - Fork 64
Use newer version of copy_atom in epilogue collective #573
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
578ae95
aaf2685
407a875
45ac04e
12282e8
6596ac8
7ea69d5
6944d90
501bd52
b79594b
acb45be
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -68,7 +68,7 @@ template < | |
| class CopyOpR2S_ | ||
| > | ||
| class CollectiveEpilogue< | ||
| IntelXeXMX16, | ||
| IntelXeL1Staged, | ||
| CtaTileMNK_, | ||
| ElementC_, | ||
| StrideC_, | ||
|
|
@@ -86,7 +86,7 @@ class CollectiveEpilogue< | |
| // | ||
| // Type Aliases | ||
| // | ||
| using DispatchPolicy = IntelXeXMX16; | ||
| using DispatchPolicy = IntelXeL1Staged; | ||
| using CtaTileMNK = CtaTileMNK_; | ||
| using FusionCallbacks = FusionCallbacks_; | ||
| using ElementC = ElementC_; | ||
|
|
@@ -101,9 +101,9 @@ class CollectiveEpilogue< | |
| using CopyOpR2S = CopyOpR2S_; | ||
|
|
||
| using ThreadEpilogueOp = typename fusion::FusionCallbacksTraits<FusionCallbacks>::Operation; | ||
| using GmemTiledCopyC = conditional_t<cute::is_void_v<CopyOpG2R>, XE_2D_U32x8x16_LD_N, CopyOpG2R>; | ||
| using GmemTiledCopyC = conditional_t<cute::is_void_v<CopyOpG2R>, XE_LOAD_2D<32, 8, 16>, CopyOpG2R>; | ||
| using GmemTiledCopyD = cute::conditional_t<not cute::is_void_v<ElementD> && not cute::is_void_v<CopyOpR2G>, | ||
| CopyOpR2G, XE_2D_U32x8x16_ST_N>; | ||
| CopyOpR2G, XE_STORE_2D<32, 8, 16>>; | ||
| using ElementOutput = ElementD; | ||
| using ElementCompute = typename ThreadEpilogueOp::ElementCompute; | ||
| using ElementAccumulator = ElementCompute; | ||
|
|
@@ -118,16 +118,6 @@ class CollectiveEpilogue< | |
| static_assert(std::is_same_v<SmemLayoutAtomC, void>, "Copy operation to shared memory is not supported"); | ||
| static_assert(std::is_same_v<SmemLayoutAtomD, void>, "Copy operation to shared memory is not supported"); | ||
|
|
||
| using CopyThreadShape = Shape<_1, Int<SubgroupSize>>; | ||
|
|
||
| using Trait_C = Copy_Traits<GmemTiledCopyC, StrideC>; | ||
| using val_layout_load_C = decltype(make_layout(shape_div(typename Trait_C::BlockShape{}, CopyThreadShape{}))); | ||
| using XE_Copy_C = decltype(make_tiled_copy(Copy_Atom<Trait_C, ElementC>{}, Layout<CopyThreadShape>{}, val_layout_load_C{})); | ||
|
|
||
| using Trait_D = Copy_Traits<GmemTiledCopyD, StrideD>; | ||
| using val_layout_store_D = decltype(make_layout(shape_div(typename Trait_D::BlockShape{}, CopyThreadShape{}))); | ||
| using XE_Copy_D = decltype(make_tiled_copy(Copy_Atom<Trait_D, ElementD>{}, Layout<CopyThreadShape>{}, val_layout_store_D{})); | ||
|
|
||
| private: | ||
| constexpr static bool is_source_supported = not cute::is_void_v<ElementC> && not cute::is_void_v<CopyOpG2R>; | ||
| constexpr static bool is_destination_supported = not cute::is_void_v<ElementD> && not cute::is_void_v<CopyOpR2G>; | ||
|
|
@@ -153,6 +143,15 @@ class CollectiveEpilogue< | |
| }; | ||
| using TensorStorage = typename SharedStorage::TensorStorage; | ||
|
|
||
| // Helper to get tensor types | ||
| template<class Element, class Stride> | ||
| using TensorTypeC = decltype(make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), | ||
| make_layout(make_shape(int{}, int{}, int{}), Stride{}))); | ||
|
|
||
| template<class Element, class Stride> | ||
| using TensorTypeD = decltype(make_tensor(make_gmem_ptr(static_cast<Element*>(nullptr)), | ||
| make_layout(make_shape(int{}, int{}, int{}), Stride{}))); | ||
|
|
||
| // Host side epilogue arguments | ||
| struct Arguments { | ||
| typename FusionCallbacks::Arguments thread{}; | ||
|
|
@@ -165,8 +164,8 @@ class CollectiveEpilogue< | |
| // Device side epilogue params | ||
| struct Params { | ||
| typename FusionCallbacks::Params thread{}; | ||
| XE_Copy_C xe_load_c; | ||
| XE_Copy_D xe_store_d; | ||
| TensorTypeC<ElementC, StrideC> mC; | ||
| TensorTypeD<ElementD, StrideD> mD; | ||
| }; | ||
|
|
||
| // | ||
|
|
@@ -182,23 +181,13 @@ class CollectiveEpilogue< | |
| // Optionally append 1s until problem shape is rank-4 in case its is only rank-3 (MNK) | ||
| auto problem_shape_MNKL = append<4>(problem_shape, 1); | ||
| auto [M, N, K, L] = problem_shape_MNKL; | ||
|
|
||
| XE_Copy_C xe_load_c = {}; | ||
| if constexpr (is_source_supported) { | ||
| auto mC = make_tensor(make_gmem_ptr(args.ptr_C), make_layout(make_shape(M, N, L), args.dC)); | ||
| xe_load_c = {xe_load_c.with(mC)}; | ||
| } | ||
|
|
||
| XE_Copy_D xe_store_d = {}; | ||
| if constexpr (is_destination_supported) { | ||
| auto mD = make_tensor(make_gmem_ptr(args.ptr_D), make_layout(make_shape(M, N, L), args.dD)); | ||
| xe_store_d = {xe_store_d.with(mD)}; | ||
| } | ||
| auto mC = make_tensor(make_gmem_ptr(args.ptr_C), make_layout(make_shape(M, N, L), args.dC)); | ||
| auto mD = make_tensor(make_gmem_ptr(args.ptr_D), make_layout(make_shape(M, N, L), args.dD)); | ||
|
|
||
| return { | ||
| FusionCallbacks::to_underlying_arguments(problem_shape, args.thread, workspace), | ||
| xe_load_c, | ||
| xe_store_d, | ||
| mC, | ||
| mD | ||
| }; | ||
| } | ||
|
|
||
|
|
@@ -269,6 +258,37 @@ class CollectiveEpilogue< | |
| return fusion_callbacks.is_producer_load_needed(); | ||
| } | ||
|
|
||
| template<typename Tensor> | ||
| CUTLASS_DEVICE auto reshape_with_unit_insertion(Tensor&& tensor) { | ||
| using namespace cute; | ||
|
|
||
| auto orig_layout = tensor.layout(); | ||
| auto orig_shape = orig_layout.shape(); | ||
| auto orig_stride = orig_layout.stride(); | ||
|
|
||
| auto first_dim = get<0>(orig_shape); | ||
| auto outer_part = get<0>(first_dim); | ||
| auto inner_part = get<1>(first_dim); | ||
|
|
||
| auto first_stride = get<0>(orig_stride); | ||
| auto outer_stride = get<0>(first_stride); | ||
| auto inner_stride = get<1>(first_stride); | ||
|
|
||
| auto target_shape = make_shape( | ||
| make_shape(outer_part, _1{}), | ||
| get<0>(inner_part), | ||
| get<1>(inner_part) | ||
| ); | ||
|
|
||
| auto target_stride = make_stride( | ||
| make_stride(outer_stride, _0{}), | ||
| get<0>(inner_stride), | ||
| get<1>(inner_stride) | ||
| ); | ||
|
|
||
| return make_tensor(tensor.data(), make_layout(target_shape, target_stride)); | ||
sanchitintel marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
|
|
||
| template< | ||
| class ProblemShapeMNKL, | ||
| class TileShapeMNK, | ||
|
|
@@ -285,7 +305,6 @@ class CollectiveEpilogue< | |
| TiledMma tiled_mma, | ||
| int thread_idx) { | ||
|
|
||
| (void) tiled_mma; | ||
| using namespace cute; | ||
|
|
||
| static_assert(cute::rank(CtaTileMNK{}) == 3, "CtaTileMNK must be rank-3: [CTA_M, CTA_N, CTA_K]"); | ||
|
|
@@ -296,12 +315,11 @@ class CollectiveEpilogue< | |
| static constexpr auto BLK_M = get<0>(CtaTileMNK{}); | ||
| static constexpr auto BLK_N = get<1>(CtaTileMNK{}); | ||
| static constexpr auto BLK_K = get<2>(CtaTileMNK{}); | ||
| // static_assert(is_same_v<typename TiledMma::ThrLayoutVMNK, int>, "assertation fail"); | ||
| static constexpr auto ATOM_M = get<1>(typename TiledMma::ThrLayoutVMNK{}.shape()); | ||
| static constexpr auto ATOM_N = get<2>(typename TiledMma::ThrLayoutVMNK{}.shape()); | ||
| static constexpr auto ATOM_K = get<3>(typename TiledMma::ThrLayoutVMNK{}.shape()); | ||
| static_assert( | ||
|
|
||
| static_assert( | ||
| BLK_M % ATOM_M == 0 && | ||
| BLK_N % ATOM_N == 0 && | ||
| BLK_K % ATOM_K == 0, | ||
|
|
@@ -315,46 +333,53 @@ class CollectiveEpilogue< | |
| static constexpr int FragsN = get<1>(SubgroupTileShape{}) / get<1>(MmaAtomShape()); // B frags per sub_group | ||
|
|
||
| static constexpr int FragmentSize = (get<0>(MmaAtomShape()) * get<1>(MmaAtomShape())) / SubgroupSize; | ||
|
|
||
| // Indexing variables | ||
| auto [M, N, K, L] = problem_shape_mnkl; | ||
| auto [m_coord, n_coord, k_coord, l_coord] = tile_coord_mnkl; | ||
| auto m_sg = get_sub_group_id() / ATOM_N; | ||
| auto n_sg = get_sub_group_id() % ATOM_N; | ||
|
|
||
| auto mn_shape = shape(typename decltype(params.xe_store_d)::Tiler_MN{}); | ||
|
|
||
| auto sg_local_m_coord = get_sub_group_id() / ATOM_N; | ||
| auto sg_local_n_coord = get_sub_group_id() % ATOM_N; | ||
|
|
||
| auto sg_m_coord = m_coord * ATOM_M + sg_local_m_coord; | ||
| auto sg_n_coord = n_coord * ATOM_N + sg_local_n_coord; | ||
| auto sg_coord = make_coord(sg_m_coord, sg_n_coord, k_coord, l_coord); | ||
|
|
||
|
|
||
| auto wg_coord = make_coord(m_coord, n_coord, k_coord, l_coord); | ||
| bool is_C_load_needed = is_source_supported && fusion_callbacks.is_C_load_needed(); | ||
|
|
||
| /* | ||
| * NOTE: Automatic selection of load/store operations using make_block_2d_copy_C/make_block_2d_copy_D | ||
| * is currently not supported. The current implementation is restricted to specific load/store | ||
| * operations with dimensions 16x8, which are tightly coupled to the MMA atom size requirements. | ||
| * | ||
| * TODO: Future enhancement will include automatic selection of load/store operations | ||
| * in collectiveEpilogue to provide more flexible dimension support. | ||
| */ | ||
| auto batch_idx = get<3>(wg_coord); | ||
| auto copy_c = make_block_2d_copy_CD(GmemTiledCopyC{}, tiled_mma, params.mC(_,_,batch_idx)); | ||
| auto copy_d = make_block_2d_copy_CD(GmemTiledCopyD{}, tiled_mma, params.mD(_,_,batch_idx)); | ||
|
|
||
| // Represent the full output tensor | ||
| Tensor mD_mnl = cute::get_xe_tensor(make_shape(M,N,L)); | ||
|
|
||
| // Tile the output tensor per WG and select the tile for current WG | ||
| Tensor g_wg_D = local_tile(mD_mnl, take<0,2>(CtaTileMNK{}), make_coord(m_coord,n_coord,l_coord)); // (BLK_M,BLK_N) | ||
|
|
||
| // Tile the output tensor per SG and select tile for the current SG | ||
| Tensor gD = local_tile(g_wg_D, take<0,2>(SubgroupTileShape{}), make_coord(m_sg,n_sg)); // (SG_M,SG_N) | ||
| // Tile the output tensor for the current workgroup | ||
| Tensor gD = local_tile(mD_mnl, take<0,2>(CtaTileMNK{}), remove<2>(wg_coord)); // (BLK_M,BLK_N) | ||
|
|
||
| auto thread_xe_load_c = params.xe_load_c.get_thread_slice(thread_idx); | ||
| Tensor tCgC = thread_xe_load_c.partition_S(gD); | ||
| auto thread_xe_load_c = copy_c.get_thread_slice(thread_idx); | ||
| Tensor tCgC = reshape_with_unit_insertion(thread_xe_load_c.partition_S(gD)); | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What's the purpose of this reshape and why is it needed? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @rolandschulz - The reshape_with_unit_insertion is needed because of differences between legacy and new atoms. In the legacy code, after partitioning with old atoms, we got the tCgC/tCgD layout as ArithTuple(0,0,0) o ((_8,_1),_4,_4):((_1@0,_0),_8@0,_16@1) so we could processes 8 elements across 4×4 iterations. However, with new atoms, I was getting ArithTuple(0,0,0) o ((_8,(_4,_4)),_1,_1):((_1@0,(_8@0,_16@1)),_0,_0) instead. The legacy code uses trC/trD with layout ptr32b o (_8):(_1), which corresponds to a fragmentSize of 8. This fragment size is calculated as (get<0>(MmaAtomShape()) * get<1>(MmaAtomShape())) / SubgroupSize, In my earlier implementation, I was doing direct bulk copying of 128 elements tCgC/tCgD :ArithTuple(0,0,0) o ((_8,(_4,_4)),_1,_1):((_1@0,(_8@0,_16@1)),_0,_0) to trC/trD ptr32b o ((_8,(_4,_4)),_1,_1):((_1,(_8,_32)),_0,_0) without reshaping, but this caused register spills which worsen with larger block size but was working with all load ops. So, the reshape allows me to match the legacy behavior by processing 8 elements at a time, eliminating register spills. I'm unsure if there's another function associated with new atoms that could achieve this layout without reshaping - waiting for Peter to check & revert. However legacy approach is currently restricted to XE_2D_U32x8x16_LD_N/ST_N operations (16×8 dimensions only) due to the code design limitations. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Copying an offline comment here: I'm fine with merging the changes here as long as the level of functionality is no worse than what was already available, and performance is on par. But yes, I think the legacy implementation needs to be rewritten, for several reasons:
@anamikac-intel — if you want to merge your changes as-is and address the points above later, let's create a JIRA to track the technical debt. I think we need a JIRA too for the dimensionality assumptions for the CollectiveMMA we discussed on #540 as well. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
When Anamika manually specified copy atoms in her previous implementation, the performance was still worse than the legacy implementation, so it seems this problem (register spills, as described above) is not inherent to There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @sanchitintel Yes, that's right. Though as I mentioned above, fundamentally it's a problem with IGC code scheduling and not even the epilogue implementation. To make code scheduling easier for the compiler, it seems we do need to break up the C/D access into smaller tiles (might as well do one atom at a time). But instead of hard-coding the accumulator access, we should use the regular CuTe machinery to tile C/D/accumulator into smaller tiles. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks again for clarifying, @petercad! Please correct me if I got it wrong - the observed IGC issues comes into play when we do some specific type of compute (such as epilogue computation) on large tiles, and it isn't the R2G/G2R copies with manually specified copy atoms alone that are problematic for IGC. Tiling the SG-tile further into smaller tiles may help make scheduling easier for IGC. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, that's right. When we manually tile the subgroup tile into smaller tiles, we aren't changing the instructions, just how they are ordered. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the "reshape" here is not a general solution which is only for special case i think. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, the code is specifically designed to work only with particular load/store operations (16 x 8 dimensions). Because it's tightly coupled with the MMA atom size, the implementation fails when the load/store atom exceeds the MMA atom size. Even attempts to generalize it for other load/store operations won't work due to this fundamental constraint. After discussing with Peter, we agreed that if performance matches the old atom, we can merge this change. However, we'll address the underlying technical debt in a separate PR #573 (comment) |
||
|
|
||
| auto thread_xe_store_d = params.xe_store_d.get_thread_slice(thread_idx); | ||
| Tensor tCgD = thread_xe_store_d.partition_D(gD); | ||
| auto thread_xe_store_d = copy_d.get_thread_slice(thread_idx); | ||
| Tensor tCgD = reshape_with_unit_insertion(thread_xe_store_d.partition_D(gD)); | ||
|
|
||
| Tensor trC = make_tensor<ElementC>(Shape<Int<FragmentSize>>{}); | ||
| Tensor trD_compute = make_tensor<ElementCompute>(Shape<Int<FragmentSize>>{}); | ||
|
|
||
| // Because Sm90 uses shared memory, they are not tied to using the same accumulator values | ||
| // for MMA and Epilogue. But because we are operating directly in the accumulators, we need to be | ||
| // sure that we are operating on the same values. | ||
| ThrCopy thread_g2r = params.xe_load_c.get_slice(thread_idx); | ||
| ThrCopy thread_g2r = copy_c.get_slice(thread_idx); | ||
| auto mn_shape = shape(typename decltype(copy_d)::Tiler_MN{}); | ||
|
|
||
| // OOB predication for tile quantization "residue" | ||
| // Absolute coordinate tensors (dynamic) | ||
|
|
@@ -363,7 +388,7 @@ class CollectiveEpilogue< | |
| Tensor cD_mn = local_tile(mD_crd, take<0,2>(CtaTileMNK{}), make_coord(m_coord, n_coord)); // (CTA_M,CTA_N) | ||
| Tensor tRS_cD_mn = thread_g2r.partition_S(flat_divide(cD_mn, mn_shape)); // (G2R,G2R_M,G2R_N,EPI_M,EPI_N) | ||
|
|
||
| Tensor tRS_cD = make_coord_tensor(tRS_cD_mn.layout()); // (G2R,G2R_M,G2R_N,EPI_M,EPI_N) | ||
| Tensor tRS_cD = make_coord_tensor(tRS_cD_mn.layout()); | ||
|
|
||
| // Get the fusion callbacks | ||
| // Arguments passed here relate to sub-group tiles, rather than CTA (work-group) tiles | ||
|
|
@@ -375,7 +400,7 @@ class CollectiveEpilogue< | |
| sg_coord, | ||
| tiled_mma, | ||
| mn_shape, | ||
| params.xe_store_d, | ||
| copy_d, | ||
| cD, | ||
| residue_mn, | ||
| tRS_cD, | ||
|
|
@@ -400,7 +425,8 @@ class CollectiveEpilogue< | |
| FragsM * FragsN * FragmentSize * SubgroupSize * ATOM_M * ATOM_N * ATOM_K; | ||
| constexpr int MN = get<0>(CtaTileMNK{}) * get<1>(CtaTileMNK{}); | ||
| static_assert(ValuesLoaded == MN, "the total elements loaded by all threads should be the same as MxN" ); | ||
|
|
||
|
|
||
|
|
||
| auto synchronize = [&] () {}; | ||
| CUTLASS_PRAGMA_UNROLL | ||
| for (int epi_n = 0; epi_n < FragsN; epi_n++) { | ||
|
|
@@ -409,7 +435,7 @@ class CollectiveEpilogue< | |
| cst_callbacks.begin_loop(epi_m, epi_n); | ||
|
|
||
| if (is_C_load_needed) { | ||
| copy(params.xe_load_c, tCgC(_, epi_m, epi_n), trC); | ||
| copy(copy_c, tCgC(_, epi_m, epi_n), trC); | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @anamikac-intel can you replace "tCgC(, epi_m, epi_n)" with "tCgC((, (epi_m, epi_n)), _, _)" which is what you want for "reshape_with_unit_insertion" although it's not a good fix. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @taozha2 -- this workaround not working.. please see the layout below: tCgC ArithTuple(0,0,0) o ((_8,(_4,_4)),_1,_1):((_1@0,(_8@0,_16@1)),_0,0) |
||
| } | ||
|
|
||
| cst_callbacks.previsit(epi_m, epi_n, 0, is_C_load_needed); | ||
|
|
@@ -421,21 +447,23 @@ class CollectiveEpilogue< | |
| trD_compute_frag(epi_v) = cst_callbacks.visit(acc_frag_mn(epi_v), epi_v, epi_m, epi_n); | ||
| } | ||
| cst_callbacks.reduce(nullptr, synchronize, epi_m, epi_n, (epi_m == FragsM - 1 && epi_n == FragsN - 1), trD_compute_frag); | ||
|
|
||
| if constexpr (is_destination_supported) { | ||
| CUTLASS_PRAGMA_UNROLL | ||
| for (int i = 0; i < size(trD_compute_frag); ++i) { | ||
| trD_frag(i) = cutlass::NumericArrayConverter<ElementOutput, RegisterElementD, FragmentSize>{}(trD_compute_frag(i)); | ||
| } | ||
| copy(params.xe_store_d, trD, tCgD(_, epi_m, epi_n)); | ||
| copy(copy_d, trD, tCgD(_, epi_m, epi_n)); | ||
| } | ||
|
|
||
| cst_callbacks.end_loop(epi_m, epi_n); | ||
|
|
||
| } | ||
| } | ||
|
|
||
| cst_callbacks.end(); | ||
| } | ||
|
|
||
| } | ||
|
|
||
| private: | ||
| Params const& params; | ||
|
|
@@ -449,4 +477,4 @@ class CollectiveEpilogue< | |
| } // namespace epilogue | ||
| } // namespace cutlass | ||
|
|
||
| ///////////////////////////////////////////////////////////////////////////////////////////////// | ||
| ///////////////////////////////////////////////////////////////////////////////////////////////// | ||
Uh oh!
There was an error while loading. Please reload this page.