A generative framework for exploring inorganic crystalline materials with desired properties.
- Python 3.12
- Git LFS
First, install PyTorch. For example, with CUDA 12.4, you can install PyTorch as follows:
$ pip install torch==2.5.1 --index-url https://download.pytorch.org/whl/cu124
Install PyTorch Geometric and its dependencies:
$ pip install torch_geometric
$ pip install torch_scatter torch_sparse -f https://data.pyg.org/whl/torch-2.5.0+cu124.html
Install all other required packages with:
$ pip install .
Set your OpenAI API Key as an environment variable:
$ export OPENAI_API_KEY="YOUR_API_KEY"
After installation, run the inference script:
$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8
Here, the --data_path
parameter should be set to the path containing data used for sampling initial compositions.
To initialize composition with Retriever, set the --initial_guess
parameter to 'retriever'.
$ matagent-inference --use_planning --initial_guess "retriever" --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8
To impose additional constraints, use the --additional_prompt
parameter.
$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8 --additional_prompt "ADDITIONAL PROMPT"
@article{takahara2025accelerated,
title={Accelerated Inorganic Materials Design with Generative AI Agents},
author={Izumi Takahara and Teruyasu Mizoguchi and Bang Liu},
journal={arXiv preprint arXiv:2504.00741},
year={2025},
}
This project was primarily built upon CDVAE, DiffCSP, ComFormer, and MatExpert.
@article{xie2021crystal,
title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
journal={arXiv preprint arXiv:2110.06197},
year={2021}
}
@article{jiao2024crystal,
title={Crystal Structure Prediction by Joint Equivariant Diffusion},
author={Rui Jiao and Wenbing Huang and Peijia Lin and Jiaqi Han and Pin Chen and Yutong Lu and Yang Liu},
journal={arXiv preprint arXiv:2309.04475},
year={2023},
}
@article{yan2024complete,
title={Complete and Efficient Graph Transformers for Crystal Material Property Prediction},
author={Keqiang Yan and Cong Fu and Xiaofeng Qian and Xiaoning Qian and Shuiwang Ji},
journal={arXiv preprint arXiv:2403.11857}
year={2024},
}
@article{ding2024matexpert,
title={MatExpert: Decomposing Materials Discovery by Mimicking Human Experts},
author={Qianggang Ding and Santiago Miret and Bang Liu},
journal={arXiv preprint arXiv:2410.21317}
year={2024},
}