Skip to content

izumitkhr/matagent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MatAgent

A generative framework for exploring inorganic crystalline materials with desired properties.

Requirements

  • Python 3.12
  • Git LFS

Installation

Install PyTorch

First, install PyTorch. For example, with CUDA 12.4, you can install PyTorch as follows:

$ pip install torch==2.5.1 --index-url https://download.pytorch.org/whl/cu124

Install PyG

Install PyTorch Geometric and its dependencies:

$ pip install torch_geometric
$ pip install torch_scatter torch_sparse -f https://data.pyg.org/whl/torch-2.5.0+cu124.html

Intall other dependencies

Install all other required packages with:

$ pip install .

Setup OpenAI API Key

Set your OpenAI API Key as an environment variable:

$ export OPENAI_API_KEY="YOUR_API_KEY"

Running the code

Running the inference script

After installation, run the inference script:

$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8

Here, the --data_path parameter should be set to the path containing data used for sampling initial compositions.

Initialize with Retriever

To initialize composition with Retriever, set the --initial_guess parameter to 'retriever'.

$ matagent-inference --use_planning --initial_guess "retriever" --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8

Generate with additional constraints

To impose additional constraints, use the --additional_prompt parameter.

$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8 --additional_prompt "ADDITIONAL PROMPT"

Citation

@article{takahara2025accelerated,
  title={Accelerated Inorganic Materials Design with Generative AI Agents}, 
  author={Izumi Takahara and Teruyasu Mizoguchi and Bang Liu},
  journal={arXiv preprint arXiv:2504.00741},
  year={2025},
}

References

This project was primarily built upon CDVAE, DiffCSP, ComFormer, and MatExpert.

@article{xie2021crystal,
  title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
  author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
  journal={arXiv preprint arXiv:2110.06197},
  year={2021}
}
@article{jiao2024crystal,
  title={Crystal Structure Prediction by Joint Equivariant Diffusion}, 
  author={Rui Jiao and Wenbing Huang and Peijia Lin and Jiaqi Han and Pin Chen and Yutong Lu and Yang Liu},
  journal={arXiv preprint arXiv:2309.04475},
  year={2023},
}
@article{yan2024complete,
  title={Complete and Efficient Graph Transformers for Crystal Material Property Prediction}, 
  author={Keqiang Yan and Cong Fu and Xiaofeng Qian and Xiaoning Qian and Shuiwang Ji},
  journal={arXiv preprint arXiv:2403.11857}
  year={2024},
}
@article{ding2024matexpert,
  title={MatExpert: Decomposing Materials Discovery by Mimicking Human Experts}, 
  author={Qianggang Ding and Santiago Miret and Bang Liu}, 
  journal={arXiv preprint arXiv:2410.21317}
  year={2024},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages