forked from skirdey/voicerestore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_long.py
221 lines (166 loc) · 8.02 KB
/
inference_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import sys
import time
from types import SimpleNamespace
import torch
import torchaudio
import argparse
from tqdm import tqdm
import librosa
# Append BigVGAN to the system path
sys.path.append('./BigVGAN')
from BigVGAN.meldataset import get_mel_spectrogram
from model import OptimizedAudioRestorationModel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def measure_gpu_memory(device):
if device == 'cuda':
torch.cuda.synchronize()
return torch.cuda.max_memory_allocated() / (1024 ** 2) # Convert to MB
return 0
def apply_overlap_windowing_waveform(waveform, window_size_samples, overlap):
step_size = int(window_size_samples * (1 - overlap))
num_chunks = (waveform.shape[-1] - window_size_samples) // step_size + 1
windows = []
for i in range(num_chunks):
start_idx = i * step_size
end_idx = start_idx + window_size_samples
chunk = waveform[..., start_idx:end_idx]
windows.append(chunk)
return torch.stack(windows)
def reconstruct_waveform_from_windows(windows, window_size_samples, overlap):
step_size = int(window_size_samples * (1 - overlap))
shape = windows.shape
if len(shape) == 2:
# windows.shape == (num_windows, window_len)
num_windows, window_len = shape
channels = 1
windows = windows.unsqueeze(1) # Now windows.shape == (num_windows, 1, window_len)
elif len(shape) == 3:
num_windows, channels, window_len = shape
else:
raise ValueError(f"Unexpected windows.shape: {windows.shape}")
output_length = (num_windows - 1) * step_size + window_size_samples
reconstructed = torch.zeros((channels, output_length))
window_sums = torch.zeros((channels, output_length))
for i in range(num_windows):
start_idx = i * step_size
end_idx = start_idx + window_len
reconstructed[:, start_idx:end_idx] += windows[i]
window_sums[:, start_idx:end_idx] += 1
reconstructed = reconstructed / window_sums.clamp(min=1e-6)
if channels == 1:
reconstructed = reconstructed.squeeze(0) # Remove channel dimension if single channel
return reconstructed
def load_bigvgan_model(device):
from BigVGAN import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
'nvidia/bigvgan_v2_24khz_100band_256x',
use_cuda_kernel=False,
force_download=False
)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
return bigvgan_model
def load_model(save_path, device, decoder):
"""
Load the optimized audio restoration model.
Parameters:
- save_path: Path to the checkpoint file.
- device: Computation device.
- decoder: 'bigvgan'
"""
optimized_model = OptimizedAudioRestorationModel(device=device)
if decoder == 'bigvgan':
bigvgan_model = load_bigvgan_model(device)
optimized_model.bigvgan_model = bigvgan_model
else:
raise ValueError(f"Unsupported decoder: {decoder}")
state_dict = torch.load(save_path, map_location=device)
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
optimized_model.voice_restore.load_state_dict(state_dict, strict=True)
return optimized_model
def restore_audio(model, input_path, output_path, steps=16, cfg_strength=0.5, window_size_sec=5.0, overlap=0.5, batch_size=16, decoder='bigvgan'):
# Load the audio file
start_time = time.time()
initial_gpu_memory = measure_gpu_memory(device)
wav, sr = librosa.load(input_path, sr=model.bigvgan_model.h.sampling_rate, mono=True)
wav = torch.FloatTensor(wav).unsqueeze(0) # Shape: [1, num_samples]
window_size_samples = int(window_size_sec * sr)
step_size = int(window_size_samples * (1 - overlap))
# Apply overlapping windowing to the waveform
wav_windows = apply_overlap_windowing_waveform(wav, window_size_samples, overlap)
num_windows = wav_windows.size(0)
restored_wav_windows = []
for i in tqdm(range(0, num_windows, batch_size)):
batch_wav_windows = wav_windows[i:i+batch_size] # Shape: [batch_size, 1, window_size_samples]
batch_wav_windows = batch_wav_windows.to(device)
# Convert to Mel-spectrogram using BigVGAN's spectrogram configurations
batch_processed_mel = get_mel_spectrogram(batch_wav_windows.squeeze(1), model.bigvgan_model.h).to(device)
# Restore mel-spectrogram using voice_restore model
with torch.no_grad():
with torch.autocast(device):
restored_mel = model.voice_restore.sample(
batch_processed_mel.transpose(1, 2),
steps=steps,
cfg_strength=cfg_strength
)
restored_mel = restored_mel.transpose(1, 2) # Shape: [batch_size, mel_bins, time_steps]
with torch.no_grad():
if decoder == 'bigvgan':
with torch.autocast(device):
restored_wav = model.bigvgan_model(restored_mel).float().cpu() # Shape: [batch_size, num_samples]
else:
raise ValueError(f"Unsupported decoder: {decoder}")
restored_wav_windows.append(restored_wav)
del batch_wav_windows, batch_processed_mel, restored_wav
torch.cuda.empty_cache()
restored_wav_windows = torch.cat(restored_wav_windows, dim=0) # Shape: [num_windows, num_samples]
# Reconstruct the full waveform from the processed windows
restored_wav = reconstruct_waveform_from_windows(restored_wav_windows, window_size_samples, overlap)
# Ensure the restored_wav has correct dimensions for saving
if restored_wav.dim() == 1:
restored_wav = restored_wav.unsqueeze(0) # Shape: [1, num_samples]
# Save the restored audio
torchaudio.save(output_path, restored_wav, model.bigvgan_model.h.sampling_rate)
end_time = time.time()
total_time = end_time - start_time
peak_gpu_memory = measure_gpu_memory(device)
gpu_memory_used = peak_gpu_memory - initial_gpu_memory
print(f"Total inference time: {total_time:.2f} seconds")
print(f"Peak GPU memory usage: {peak_gpu_memory:.2f} MB")
print(f"GPU memory used: {gpu_memory_used:.2f} MB")
def main():
parser = argparse.ArgumentParser(description="Audio restoration using OptimizedAudioRestorationModel for long-form audio.")
parser.add_argument('--checkpoint', type=str, required=True, help="Path to the checkpoint file")
parser.add_argument('--input', type=str, required=True, help="Path to the input audio file")
parser.add_argument('--output', type=str, required=True, help="Path to save the restored audio file")
parser.add_argument('--steps', type=int, default=16, help="Number of sampling steps")
parser.add_argument('--cfg_strength', type=float, default=0.5, help="CFG strength value")
parser.add_argument('--window_size_sec', type=float, default=5.0, help="Window size in seconds for overlapping")
parser.add_argument('--overlap', type=float, default=0.5, help="Overlap ratio for windowing")
parser.add_argument('--decoder', type=str, choices=['bigvgan'], default='bigvgan', help="Decoder to use for waveform reconstruction")
args = parser.parse_args()
# Set device, handle MacBooks with M1 chip
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the optimized model with the selected decoder
optimized_model = load_model(args.checkpoint, device, args.decoder)
# Set model precision and move to device
if args.decoder == 'bigvgan':
if device == 'cuda':
optimized_model.bigvgan_model.bfloat16()
optimized_model.voice_restore = optimized_model.voice_restore.eval().to(device)
optimized_model = optimized_model.eval().to(device)
# Restore the audio
restore_audio(
optimized_model,
args.input,
args.output,
steps=args.steps,
cfg_strength=args.cfg_strength,
window_size_sec=args.window_size_sec,
overlap=args.overlap,
batch_size=16,
decoder=args.decoder
)
if __name__ == "__main__":
main()