ScissorBot: Learning Generalizable Scissor Skill for Paper Cutting via Simulation, Imitation, and Sim2Real
CoRL 2024
Project Page | Video | arXiv
This repository contains code for both PaperCutting-Sim environments and training scripts for ScissorBot.
conda create -n scissorbot python==3.8.16
conda activate scissorbot
python setup.py
bash setup.sh
source ~/.bashrc
python paper_cutting_game.py
Generate demos with heuristic oracle policy:
python policy/generate_demos_high_level.py \
setup.cuda=1 demos.curve_type=two_peak \
demos.angle_slot=5.73 demos.max_num=1000
You'll get source demos through the last command. Then process demos to render them with (point cloud and action pairs)
python dagger/prepare_offline.py -d SRC_DATA_PATH -o OUTPUT_PATH -g $GPU -p 1
python dagger/bc_delta.py -b 48 \
-tp TRAIN_FOLDER_NAME -ep VAL_FOLDER_NAME \
-lvb 0.07 -s 140000 -y ./config/rl/bc_8d_no_pose.yaml \
--cuda -g $GPU \
-en EXP_NAME \
-m "{'seq_len':4}"
If you find our work useful in your research, please consider citing:
@inproceedings{lyuscissorbot,
title={ScissorBot: Learning Generalizable Scissor Skill for Paper Cutting via Simulation, Imitation, and Sim2Real},
author={Lyu, Jiangran and Chen, Yuxing and Du, Tao and Zhu, Feng and Liu, Huiquan and Wang, Yizhou and Wang, He},
booktitle={8th Annual Conference on Robot Learning}
}
This work and the dataset are licensed under CC BY-NC 4.0.