The goal of jamba is to provide useful custom functions for R data analysis and visualization. jamba version 1.0.2
A full online function reference is available via the pkgdown documentation:
Functions are categorized, some examples are listed below:
Production will soon be available from CRAN:
install.packages("jamba")
The development version can be installed:
remotes::install_github("jmw86069/jamba")
crayon
- install withinstall.packages("crayon")
for glorious colored console output. Color makes it better.farver
- install withinstall.packages("farver")
for more efficient color manipulations, and HSL color coneversions.
Bioconductor packages are invaluable for bioinformatics work, but can be a bit “heavy” to install if not absolutely necessary. Therefore, Bioconductor packages are in “Enhances” so they require someone to make the choice to install them.
S4Vectors
- install withBiocManager::install("S4vectors")
to improve speed ofcPaste()
functions.openxlsx
- install withinstall.packages("openxlsx")
to support Excelxlsx
file import, and stylized export.kableExtra
- install withinstall.packages("kableExtra")
to enable colorized kable HTML tables in RMarkdown documents.ComplexHeatmap
- install withBiocManager::install("ComplexHeatmap")
to use withheatmap_row_order()
,cell_fun_label()
for custom labels.matrixStats
- install withinstall.packages("matrixStats")
for efficientnumeric
stats calculations, orsparseMatrixStats
for use with Matrix sparse matrices as used with Seurat and SingleCellExperiment data.ggridges
- install withinstall.packages("ggridges")
for convenient ridge density plots usingplotRidges()
.
The R functions in jamba
have been built up, used, tested, revised
over several years. They are immediately useful for day-to-day work, and
efficient and robust enough for production pipelines.
Many were inspired by discussion from Stackoverflow, R-help, or Bioconductor, with citations thanking principal author(s). Many thanks to the original authors! The R community is built upon the collective greatness of its contributors!
Most of the functions are designed around workflows for Bioinformatics analyses, where functions need to be efficient when operating over 10,000 to 100,000 elements. (They work quite well with millions as well.) Usually the speed gains are obvious with about 100 elements, then scale linearly (or worse) as the number increases. I and others use these functions all the time.
One example function writeOpenxlsx()
is a simple wrapper around very
useful openxlsx::write.xlsx()
, which also applies column formatting
for column types: P-values, fold changes, log2 fold changes, numeric,
and integer values. Columns use conditional Excel formatting to apply
color-shading to cells for each type.
Similarly, readOpenxlsx()
is a wrapper function to
openxlsx::read.xlsx()
which reads each worksheet and returns a list
of data.frame
objects. It can detect multi-row column headers, for
which it returns combined column names. It also applies equivalent of
check.names=FALSE
so column names are returned without change.
Small and large efficiencies are used wherever possible. The
mixedSort()
functions are based upon gtools::mixedsort()
, with
additional optimizations for speed and custom needs. It sorts chromosome
names, gene names, micro-RNA names, etc.
mixedSort()
- highly efficient alphanumeric sort, for example chr1, chr2, chr3, chr10, etc.mixedSortDF()
- as above, applied to columns in adata.frame
(ormatrix
,tibble
,DataFrame
, etc.)mixedSorts()
- as above, applied to a list of vectors with no speed loss.
Example:
miRNA | sort_rank | mixedSort_rank | |
---|---|---|---|
2 | ABCA2 | 2 | 1 |
1 | ABCA12 | 1 | 2 |
3 | miR-1 | 3 | 3 |
6 | miR-1a | 6 | 4 |
7 | miR-1b | 7 | 5 |
8 | miR-2 | 8 | 6 |
4 | miR-12 | 4 | 7 |
9 | miR-22 | 9 | 8 |
5 | miR-122 | 5 | 9 |
These functions help with base R plots, in all those little cases when
the amazing ggplot2
package is not a smooth fit.
nullPlot()
- convenient “blank” base R plot, optionally displays marginsplotSmoothScatter()
- smooth scatterplot()
for point density, enhanced oversmoothScatter()
plotPolygonDensity()
- fast density/histogram plot for vector or matriximageDefault()
- enhancedimage()
that enables raster output with consistent pixel aspect ratio.imageByColors()
- wrapper toimage()
for a matrix or data.frame of colors, with optional labelsminorLogTicksAxis()
,logFoldAxis()
,pvalueAxis()
- log axis tick marks and labels, compatible withoffset
for examplelog(offset + x)
.sqrtAxis()
- draw a square-root transformed axis, with proper labels.drawLabels()
- draw square colorized text labelsshadowText()
- replacement fortext()
that draws shadows or outlines.groupedAxis()
- grouped axis labels to show regions/rangesdecideMfrow()
- determine appropriate value forpar("mfrow")
for multipanel output in base R plotting.getPlotAspect()
- determine visible plot aspect ratio.
Every Bioinformatician/statistician needs to write data to Excel, the
writeOpenxlsx()
function is consistent and makes it look pretty. You
can save numerous worksheets in a single Excel file, without having to
go back and custom-format everything.
writeOpenxlsx()
- flexible Excel exporter, with categorical and conditional colors.applyXlsxCategoricalFormat()
- apply categorical colors to ExcelapplyXlsxConditionalFormat()
- apply conditional colors to Excel
Almost everything uses color somewhere, especially on R console, and in every R plot.
getColorRamp()
- retrieve or create color palettessetTextContrastColor()
- find contrasting font color for colored backgroundmakeColorDarker()
- make a color darker (or lighter, or saturated)color2gradient()
- split one color to a gradient ofn
colorsshowColors()
- display a vector orlist
of colorsrainbow2()
- enhancesrainbow()
categorical colors for visual contrast.warpRamp()
- “bend” a color gradient to enhance the visual rangefixYellow()
- opinionated reduction of yellow-green hueprintDebug()
- colorized text output to console or RMarkdownprintDebugHtml()
- colorized HTML output in RMarkdown or web pageskable_coloring()
- coloredkableExtra::kable()
RMarkdown tables, ifkableExtra
package is installed.col2alpha()
,alpha2col()
- get or set alpha transparencycol2hcl()
,col2hsl()
,col2hsv()
,hcl2col()
,hsl2col()
,hsv2col()
,rgb2col()
- consistent color conversions.color_dither()
- split color into two to make color stripes
Efficient methods to operate on lists in one call, to avoid looping
through the list either with for()
loops, lapply()
or map()
functions. Driven by speed with 10k-100k rows, typical biological
datasets.
Compared to convenient alternatives, apply()
or tidyverse, typically
order of magnitude faster. (Ymmv.) Notable exceptions: data.table
and
Bioconductor S4Vectors
. Both are amazing, and are fairly heavy
installations. S4Vectors
is used when available.
cPaste()
-paste(..., collapse)
a list of vectorscPasteS()
-cPaste()
withmixedSort()
cPasteU()
-cPaste()
withunique()
(actuallyuniques()
)cPasteSU()
-cPaste()
withmixedSort()
andunique()
uniques()
-unique()
across a list of vectorssclass()
-class()
a listsdim()
-dim()
across a list, or S4 object, or non-list objectssdim()
-sdim()
across a listsdima()
-sdim()
forattributes()
rbindList()
-do.call(rbind, ...)
to bind rows into amatrix
ordata.frame
, useful together withstrsplit()
.mergeAllXY()
-merge(..., all.x=TRUE, all.y=TRUE)
a list ofdata.frame
rmNULL()
- remove NULL from a list, with optional replacementrmNAs()
-rmNA()
across a list, with option replacement(s)showColors()
- display colorsheads()
-head()
across a list
R object names provide an additional method to confirm data are kept in the proper order. Duplicated names may be silently ignored, which motivated the easy approach to “make unique names”.
makeNames()
- make unique names, with flexible rulesnameVector()
- add unique names usingmakeNames()
nameVectorN()
- make vector of names, named withmakeNames()
. Useful insidelapply()
which returns names but only when provided.
mixedSortDF()
-mixedSort()
by columns or rownamespasteByRow()
- fast row-paste with delimiters, default skips blankspasteByRowOrdered()
- nifty alternative that honors factor levelsrowGroupMeans()
,rowRmMadOutliers()
- grouped row functionsmergeAllXY()
- merge a list ofdata.frame
into one, keeping all rowsrenameColumn()
- rename columnsfrom
andto
.kable_coloring()
- flexible colorizeddata.frame
output in Rmarkdown.
tcount()
-table()
sorted high-to-low, with minimum count filtermiddle()
- shown
entries from start, middle, then end.gsubOrdered()
-gsub()
that returns ordered factor, inherits existinggsubs()
-gsub()
a vector of patterns/replacements.grepls()
- grep the environment object names, including attached packagesvgrep()
,vigrep()
- value-grep shortcutunvgrep()
,unvigrep()
- un-grep, remove matched resultsprovigrep()
- progressive grep, returns matches in order of patternsigrepHas()
- case-insensitive grep-anyucfirst()
- upper-case the first letter of each word.padString()
,padInteger()
- produce strings from numeric values with consistent leading zeros.
formatInt()
- opinionatedformat()
for integers.normScale()
- scale between 0 and 1 or custom rangenoiseFloor()
- apply noise floor, ceiling, with flexible replacementslog2signed()
,exp2signed()
- log2 with offset, and reciprocalrowGroupMeans()
,rowRmMadOutliers()
- efficient grouped row functionsdeg2rad()
,rad2deg()
- interconvert degrees and radiansrmNA()
- remove NA values, with optional replacementwarpAroundZero()
- warp a numeric vector symmetrically around zerormInfinite()
- remove infinite values, with optional replacement.formatInt()
- convenientformat()
for integer output, with comma-delimiter by default
- convert zero to NA:
noiseFloor(0:10, minimum=1e-20, newValue=NA)
#> [1] NA 1 2 3 4 5 6 7 8 9 10
- convert values below floor to floor:
noiseFloor(0:10, minimum=3)
#> [1] 3 3 3 3 4 5 6 7 8 9 10
- convert values below floor or NA to floor:
noiseFloor(c(0:10, NA), minimum=3, adjustNA=TRUE)
#> [1] 3 3 3 3 4 5 6 7 8 9 10 3
jargs()
- pretty function arguments, optional pattern search argument name
jargs(plotSmoothScatter)
#> x = ,
#> y = NULL,
#> bwpi = 50,
#> binpi = 50,
#> bandwidthN = NULL,
#> nbin = NULL,
#> expand = c(0.04, 0.04),
#> transFactor = 0.25,
#> transformation = function( x ) x^transFactor,
#> xlim = NULL,
#> ylim = NULL,
#> xlab = NULL,
#> ylab = NULL,
#> nrpoints = 0,
#> colramp = c("white", "lightblue", "blue", "orange", "orangered2"),
#> col = "black",
#> doTest = FALSE,
#> fillBackground = TRUE,
#> naAction = c("remove", "floor0", "floor1"),
#> xaxt = "s",
#> yaxt = "s",
#> add = FALSE,
#> asp = NULL,
#> applyRangeCeiling = TRUE,
#> useRaster = TRUE,
#> verbose = FALSE,
#> ... =
sdim()
,ssdim()
- dimensions of list objects, or nested list of listssdima()
- runssdim()
on the attributes of an object.isTRUEV()
,isFALSEV()
- vectorized test for TRUE or FALSE values, sinceisTRUE()
only operates on single values, and does not allowNA
.reload_rmarkdown_cache()
- load RMarkdown cache folder into environmentcall_fn_ellipsis()
- for developers, call child function while passing only acceptable arguments in...
. Instead of:something(x, ...)
, use:call_fn_ellipsis(something, x, ...)
and never worry about...
.log2signed()
,exp2signed()
- convenientlog2(1 + x)
or its reciprocal, using customizable offset.newestFile()
- most recently modified file from a vector of files
jargs()
- Jam argument list - see “Practical” above for examplelldf()
-ls()
withobject.size()
intodata.frame
middle()
- Similar tohead()
andtail()
,middle()
showsn
entries from beginning, middle, to end.printDebug()
- colorized text outputsetPrompt()
- colorized R console prompt with project name and R version
-
reload_rmarkdown_cache()
- when rendering RMarkdown withcache=TRUE
, this function reads the cache to reload the environment without re-processing, to recover the exact result for continued work. -
printDebugHtml()
- colored HTML output.- Shortcut for
printDebug(..., htmlOut=TRUE, comments=FALSE)
, oroptions("jam.htmlOut"=TRUE, "jam.comment"=FALSE)
. - The RMarkdown chunk must include:
results='asis'
- Shortcut for
printDebugHtml("printDebugHtml(): ",
"Output is colorized: ",
head(LETTERS, 8))
(12:05:41) 07Mar2025:
printDebugHtml():
Output is colorized:
A,B,C,D,E,F,G,H
withr::with_options(list(jam.htmlOut=TRUE, jam.comment=FALSE), {
printDebugHtml(c("printDebug() using withr::with_options(): "),
c("Output should be colorized: "),
head(LETTERS, 8));
})
(12:05:41) 07Mar2025:
printDebug() using withr::with_options():
Output should be colorized:
A,B,C,D,E,F,G,H
-
kable_coloring()
- applies categorical colors tokable()
output usingkableExtra::kable()
.- It also applies a contrasting text color.
- Unfortunately, the HTML output is not compatible with this page on Github, see package function docs in RStudio.
expt_df <- data.frame(
Sample_ID="",
Treatment=rep(c("Vehicle", "Dex"), each=6),
Genotype=rep(c("Wildtype", "Knockout"), each=3),
Rep=paste0("rep", c(1:3)))
expt_df$Sample_ID <- pasteByRow(expt_df[, 2:4])
# define colors
colorSub <- c(Vehicle="palegoldenrod",
Dex="navy",
Wildtype="gold",
Knockout="firebrick",
nameVector(color2gradient("grey48", n=3, dex=10), rep("rep", 3), suffix=""),
nameVector(
color2gradient(n=3,
c("goldenrod1", "indianred3", "royalblue3", "darkorchid4")),
expt_df$Sample_ID))
kbl <- kable_coloring(
expt_df,
caption="Experiment design table showing categorical color assignment.",
colorSub)
Jam Github R packages are being transitioned to CRAN/Bioconductor:
venndir
: Venn diagrams with direction, designed for published figures.multienrichjam
: Multi-enrichment pathway analysis and visualization tools.splicejam
: Sashimi plots for RNA-seq coverage and junction data.jamma
: MA-plots as a unified data signal quality control toolset.colorjam
:rainbowJam()
, Categorical colors with improved visual contrast.genejam
: Fast, structured approach to gene symbol integration.platjam
: Platform specific functions: Nanostring, Salmon, Proteomics, Lipidomics; NGS coverage heatmaps.jamses
:heatmap_se()
friendly wrapper for ComplexHeatmap; other integrated methods for factor-aware design/contrasts, normalization, contrasts, heatmaps.jamsession
: properly save/load R objects, R sessions, R functions.