Skip to content
/ ConZIC Public

Official implementation of "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing"

License

Notifications You must be signed in to change notification settings

joeyz0z/ConZIC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

a30fe62 · Sep 18, 2023

History

75 Commits
Jul 3, 2023
Apr 21, 2023
Mar 8, 2023
May 30, 2023
Mar 2, 2023
Mar 8, 2023
May 30, 2023
Jul 3, 2023
Sep 18, 2023
Apr 21, 2023
Jul 3, 2023
Apr 21, 2023
Mar 29, 2023
Jul 3, 2023
Apr 21, 2023
Mar 22, 2023
Apr 14, 2023

Repository files navigation

ConZIC

[CVPR 2023]ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing
Zequn Zeng, Hao Zhang, Zhengjue Wang, Ruiying Lu, Dongsheng Wang, Bo Chen

arXiv Hugging Face Spaces Open In Colab

News

  • [2023/4] Adding demo on Huggingface Space and Colab!
  • [2023/3] ConZIC is publicly released!

Framework

Gibbs-BERT

Example of sentiment control

DEMO

Preparation

Please download CLIP and BERT from Huggingface Space.

SketchyCOCOcaption benchmark in our work is available here.

Environments setup.

pip install -r requirements.txt

To run zero-shot captioning on images:

ConZIC supports arbitary generation orders by change order. You can increase alpha for more fluency, beta for more image content. Notably, there is a trade-off between fluency and image-matching degree.
Sequential: update tokens in classical left to right order. At each iteration, the whole sentence will be updated.

python demo.py --run_type "caption" --order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0

Shuffled: update tokens in random shuffled generation order, different orders resulting in different captions.

python demo.py --run_type "caption" --order "shuffle" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 

Random: only randomly select a position and then update this token at each iteration, high diversity due to high randomness.

python demo.py --run_type "caption" --order "random" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0

To run controllable zero-shot captioning on images:

ConZIC supports many text-related controllable signals. For examples:
Sentiments(positive/negative): you can increase gamma for higher controllable degree, there is also a trade-off.

python demo.py 
--run_type "controllable" --control_type "sentiment" --sentiment_type "positive"
--order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 --gamma 5.0

Part-of-speech(POS): it will meet the predefined POS templete as much as possible.

python demo.py 
--run_type "controllable" --control_type "pos" --order "sequential"
--pos_type "your predefined POS templete"
--sentence_len 10 --caption_img_path "./examples/girl.jpg"  --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 --gamma 5.0

Length: change sentence_len.

Gradio Demo

We highly recommend to use the following WebUI demo in your browser from the local url: http://127.0.0.1:7860.

pip install gradio
python app.py --lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 

You can also use the demo.launch() function to create a public link used by anyone to access the demo from their browser by setting share=True.


Citation

Please cite our work if you use it in your research:

@article{zeng2023conzic,
  title={ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing},
  author={Zeng, Zequn and Zhang, Hao and Wang, Zhengjue and Lu, Ruiying and Wang, Dongsheng and Chen, Bo},
  journal={arXiv preprint arXiv:2303.02437},
  year={2023}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Acknowledgment

This code is based on the bert-gen and MAGIC.

Thanks for Jiaqing Jiang providing huggingface and Colab demo.

About

Official implementation of "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages